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Abstract

The goal of this thesis is to attempt the classification of unitary fusion categories
generated by a normal object (an object comuting with its dual) of dimension
less than 2. This classification has recently become accessible due to a result of
Morrison and Snyder, which shows that any such category must be a cyclic ex-
tension of an adjoint subcategory of one of the ADE fusion categories. Our main
tool is the classification of graded categories from [17], which classifies graded
extensions of a fusion category in terms of the Brauer-Picard group, and Drinfeld
centre of that category.

We compute the Drinfeld centres, and Brauer-Picard groups of the adjoint
subcategories of the ADE fusion categories. Using this information we apply the
machinery of graded extensions to classify the cyclic extensions that are generated
by a normal object of dimension less than 2, of the adjoint subcategories of the
ADE fusion categories. Unfortunately, our classification has a gap when the
dimension of the object is

√
2 +

√
2 corresponding to the possible existence of an

interesting new fusion category. Interestingly we prove the existence of a new
category, generated by a normal object of dimension 2 cos( π18), which we call the
DEE fusion category. We include the fusion rules for the DEE fusion categories
in an appendix to this thesis.
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Chapter 1

Introduction

Unitary fusion categories are an important class of algebraic objects, providing a
unifying framework for operator algebras, representation theory, and physics. In
the area of operator algebras, unitary fusion categories appear as the even part of
the standard invariant of a subfactor. Using the machinery available to unitary
fusion categories, many strong results regarding subfactors have been obtained.
For example, the fact that the index of a subfactor must be a cyclotomic integer,
follows directly from an analogous result regarding dimensions of objects in fusion
categories. In physics, the value of a point in a fully extended (2+1) dimensional
topological quantum field theory is a unitary fusion category. In fact there is
an exact correspondence between (2+1) dimensional TQFT’s, and unitary fusion
categories [11]. For representation theory, unitary fusion categories arise as the
representation category of many algebraic objects such as quantum groups and
vertex operator algebras. This unifying framework has provided deep connections
between these three areas of math, for instance a Turaev-Viro TQFT can be
constructed from each quantum group.

Fusion categories can be thought of as a generalisation of the representa-
tion category of a finite group, where we allow the tensor product to be non-
commutative. Inspired by the classification of finite simple groups, research on
fusion categories is focused towards providing classification theorems. However a
complete classification is hopelessly out of reach with our current techniques, so
instead research tends to focus on partial classifications.

There are many examples of such partial classifications in the literature, with
each taking a different approach on what they mean by partial. For example, in
[10], Deligne gives a classification of symmetric fusion categories (fusion categories
with a braiding satisfying an additional symmetry relation). He is able to prove
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that any symmetric fusion category is equivalent to the representation category of
a finite super group. In another direction, the results of [46] give a classification
of pivotal fusion categories with three or fewer simple objects. While both of
these results have been very influential to the field, they unfortunately failed
to produce new exotic examples of fusion categories (such as was done for finite
simple groups in their classification). In the former case, the classification reduced
to group theory, while in the latter, everything was related to quantum groups.

Another direction of partial classification has been to consider categories gen-
erated by an object of small dimension. This approach has proven successful
in providing exotic new examples of fusion categories. The extended Haagerup
subfactor [3] was discovered through this type of partial classification (see [33]
for an overview). The fusion categories associated to this subfactor remain one of
the few examples of fusion categories with no known connection to finite or quan-
tum groups. The only other examples of fusion categories not related to finite
or quantum groups are Izumi’s quadratic categories, which are close analogues of
the Haagerup subfactor [26].

One of the earliest results in the field (in fact pre-dating the definition of
fusion categories by several years) is the classification of unitary fusion categories
generated by a self-dual object of dimension less than 2. Initially proved in the
language of subfactors in the papers [4, 28, 29, 32, 35, 50, 45], such a category must
be one of the ADET unitary fusion categories. These are the fusion categories
whose fusion graph for tensoring with the generating object of dimension less than
2, is one of the ADET Dynkin diagrams, AN , D2N , E6, E8, or TN . Since their
discovery through this classification, these fusion categories have been extensively
studied in many different contexts, and still remain some of the most important
examples of unitary fusion categories.

With the above ADET classification in mind, it is natural to attempt to drop
the condition that the generating object X be self-dual, and obtain a full classifi-
cation of unitary fusion categories generated by an object of dimension less than 2.
If we assume that the category is braided, then such a classification was achieved
in [18]. Here they find that such a category must be closely related to the AN fu-
sion categories, and thus no new exotic categories appeared in this classification.
To attempt the complete classification one might emulate the techniques used in
the self-dual case. However straightaway one arrives at the stumbling block that
there is no classification of directed graphs of norm less than 2. Thus without
a braiding assumption a classification result still appears out of reach with the
current tools available. However the following Theorem of Morrison and Snyder
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may allow us to give a partial result. While this proof has not yet appeared in
the literature, we give a sketch of the proof in the Preliminaries.

Theorem 1.0.1. Let C be a unitary fusion category generated by a normal
object X of dimension less than 2, then C is a unitary cyclic extension of the
adjoint subcategory of an ADE fusion category.

Given a fusion category C the results of [17] allow us to classify G-graded
extensions of C. This main ingredient of such a classification is BrPic(C), the
group of invertible bimodules over C. As well as being useful in classification
problems this group also appears in the study of subfactors. If C is unitary then
BrPic(C) classifies all subfactors whose even and dual even parts are both C.
The process of computing Brauer-Picard groups of fusion categories is currently
receiving attention in the literature by both researchers interested in subfactors
[24, 25], and fusion categories [44, 39, 7].

With Theorem 1.0.1 in hand, along with the classification of graded extensions
of [17], it now becomes feasible to attempt to classify unitary fusion categories
generated by a normal object X of dimension less than 2. There is of course
significant work to be done to complete such a classification. Namely we need to
compute the Brauer-Picard groups of the adjoint subcategories of the ADE fusion
categories, which is no easy task for even single examples, let alone for infinite
families of fusion categories. Further, we have to understand and apply the clas-
sification results of [17] to classify cyclic extensions of the adjoint subcategories
of the ADE fusion categories. Again this is no easy task, in fact entire papers
[23] have dealt with constructing cyclic extensions of certain fusion categories.

The purpose of this thesis is to attempt the classification of unitary fusion cat-
egories generated by a normal objectX of dimension less than 2. Our approach to-
wards providing this classification will follow the proposal outlined above. While
we are able to make significant progress, our classification contains a gap when
the dimension of X is

√
2 +

√
2. We discuss this gap, along with our ideas to fill

it at the end of Chapter 4. This thesis will culminate with proving the following
Theorem.

Theorem 1.0.2. Let C be a unitary fusion category generated by a normal object
X of dimension less than 2, but not equal to

√
2 +

√
2. Then the dimension of X

is equal to 2 cos( π
N+1) for N ∈ N/{7}, and

• N is even, in which case C is monoidally equivalent to one of

Ad(AN) ⊠Vecω(Z/MZ),
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for M ∈ N, or

• N (mod 4) ≡ 3 and N ≠ {3,7,11} in which case C is monoidally equivalent
to one of

⟨(f (1),1)⟩ ⊂ AN ⊠Vecω(Z/MZ)

or
⟨(f (1),1)⟩ ⊂ AN

ω⋊Z/MZ

for M ∈ 2N, or

• N (mod 4) ≡ 1 andN ≠ {5,17,29}, in which case C is monoidally equivalent
to one of

⟨(f (1),1)⟩ ⊂ AN ⊠Vecω(Z/MZ),

⟨(f (1),1)⟩ ⊂ AN
ω⋊Z/MZ,

or
⟨(f (1),1)⟩ ⊂D±

N+3
2

⊠Vecω(Z/MZ)

for M ∈ 2N, or

• N = 3, in which case C is monoidally equivalent to one of

⟨(f (1),1)⟩ ⊂ A3 ⊠Vecω(Z/MZ)

for M ∈ 2N, or
GMRZ/2Z(M,ω)

for M ∈ 4N, or

• N = 5, in which case C is monoidally equivalent to one of

⟨(f (1),1)⟩ ⊂ A5 ⊠Vecω(Z/MZ),

⟨(f (1),1)⟩ ⊂ A5
ω⋊Z/MZ,

⟨(f (1),1)⟩ ⊂D±
4 ⊠Vecω(Z/MZ)

for M ∈ 2N, or
GMRT

Z/3Z(M,ω,±),

or
GMRV

Z/3Z(M,ω,±),

for M ∈ 6N, or
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• N = 11, in which case C is monoidally equivalent to one of

⟨(f (1),1)⟩ ⊂ A11 ⊠Vecω(Z/MZ),

⟨(f (1),1)⟩ ⊂ A11
ω⋊Z/MZ,

⟨(f (1),1)⟩ ⊂ E±
6 ⊠Vecω(Z/MZ),

or
⟨(f (1),1)⟩ ⊂ E±

6

ω⋊Z/MZ,

for M ∈ 2N, or

• N = 17, in which case C is monoidally equivalent to one of

⟨(f (1),1)⟩ ⊂ A17 ⊠Vecω(Z/MZ),

⟨(f (1),1)⟩ ⊂ A17
ω⋊Z/MZ,

⟨(f (1),1)⟩ ⊂D±
10 ⊠Vecω(Z/MZ),

for M ∈ 2N, or
⟨(Ω,1)⟩ ⊂DEE±(ψ) ⊠Vecω(Z/MZ),

for ψ ∈H3(Z/6Z,C×) and M ∈ 6N, or

• N = 29, in which case C is monoidally equivalent to one of

⟨(f (1),1)⟩ ⊂ A29 ⊠Vecω(Z/MZ),

⟨(f (1),1)⟩ ⊂ A29
ω⋊Z/MZ,

⟨(f (1),1)⟩ ⊂D±
16 ⊠Vecω(Z/MZ),

or
⟨(f (1),1)⟩ ⊂ E±

8 ⊠Vecω(Z/MZ),

for M ∈ 2N.

In each case, ω ∈H3(Z/MZ,C×).

In this Theorem, f (1) is the standard small dimensional generating object
each of the ADE fusion categories. Details on the ADE categories can be found
in Chapter 2. Details including fusion rules for the fusion categories GMRZ/2Z,
GMRT

Z/3Z, and GMRV
Z/3Z can be found in Chapter 4. Details on the DEE cate-

gories can be found in Chapter 4, and fusion rules are given in Appendix A.
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We begin our thesis with the preliminaries in Chapter 2. Here we define many
concepts relating to the topic of this thesis, including but not limited to, the
definition of a fusion category, bimodules categories, the Brauer-Picard group,
the classification of graded categories, and planar algebras. In particular we
define the ADE planar algebras, and associated unitary fusion categories. These
categories will play a key role in this thesis, due to Theorem 1.0.1.

While the ADET classification of unitary fusion categories generated by a
self-dual object of dimension less than 2 has long been known as a corollary of
the classification of subfactors of index less than 2, we include a new version
of the proof, completely independent from the subfactor classification. Part of
the motivation for including this proof is that we could not find the statement
of the classification anywhere in the literature, despite the result being so well
known. We also point out that our proof counts exactly how many unitary fusion
categories there are of each type. That is there are exactly two unitary fusion
categories of type AN , four of type D2N , four of type E6, four of type E8, and
just one of type TN .

We conclude the preliminaries by communicating a proof of Theorem 1.0.1.
In Chapter 3 we compute the Brauer-Picard groups of the adjoint subcate-

gories of the ADE fusion categories. This computation makes use of the fact
that the Brauer-Picard group of a category is isomorphic to the group of braided
auto-equivalences of the Drinfeld centre of that category. Thus we spend the first
part of this Chapter computing the Drinfeld centres of the adjoint subcategories
of the ADE fusion categories. In particular we give planar algebra presentations
for these categories.

Using these planar algebra presentations we then compute the braided pla-
nar algebra automorphisms. With the help of certain planar algebra machinery,
these braided planar algebra automorphisms give us braided auto-equivalences of
the associated Drinfeld centres. While these do not give us all the braided auto-
equivalences, we find that they give us enough that we can use combinatorics
and group theory to completely determine the entire group of braided auto-
equivalences of the centre, and hence the Brauer-Picard groups of the adjoint
subcategories of the ADE fusion categories.

We find two exciting cases with interesting Brauer-Picard groups. These
are the unitary fusion categories Ad(A7) and Ad(D10). These categories have
Brauer-Picard groups D2⋅4 and S3 × S3 respectively. This is important to us
because the existence of interesting bimodules over these categories means the
possible existence of interesting cyclic extensions, and thus possible exotic cate-
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gories appearing in our classification of unitary fusion categories generated by a
normal object of dimension less than 2. In fact the DEE fusion categories, along
with the gap at

√
2 +

√
2 appear in our classification for exactly this reason. We

end the Chapter by developing combinatorial arguments to explicitly describe
the bimodules over each of these two cases, as this information will help us when
trying to classify cyclic extensions of these categories.

In Chapter 4 we complete the proof of Theorem 1.0.2 by classifying cyclic
extensions of the adjoint subcategories of the ADE fusion categories, generated
by an object of dimension less than 2. We begin by summarising the results of the
previous Chapter, needed to apply the results of [17] to classify such extensions.
This includes explicit realisations of all the invertible bimodules over the adjoint
subcategories of the ADE fusion categories, along with the dimensions of the
objects in these categories, and the invertible objects in the Drinfeld centres.

Working through the extension theory on a case by case basis we arrive at
a proof of Theorem 1.0.2. For most of the examples we are able to explicitly
construct all the possible cyclic extensions that we are interested in, and not
have to worry about the intricacies of the extension theory. However there are
several cases that prove more difficult. These are the categories Ad(A3), Ad(D4),
and Ad(D10). In each of these cases we have to use high powered machinery from
the extension theory of graded extensions to give the classification. These proofs
unfortunately end up being quite messy. Even worse, in the Ad(A7) case we are
not able to classify all cyclic extensions generated by an object of dimension less
than 2, hence the gap in our classification at dimension

√
2 +

√
2.
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Chapter 2

Preliminaries

Fusion Categories, and Additional Structure and Properties

We begin by defining a fusion category. As we do not give a large amount of
detail, we point the reader towards [16] for a more in depth definition.

Definition 2.0.1. [16] Let K be an algebraically closed field. A fusion category
over K is a rigid semisimple K-linear monoidal category C with finitely many
isomorphism classes of simple objects and finite dimensional spaces of morphisms,
such that the unit object 1 of C is simple.

For the purpose of this thesis our algebraically closed field will be C. To avoid
repetition whenever we refer to a fusion category from now on we implicitly mean
a fusion category over C.

Example 2.0.2. Let G be a finite group, then the category of finite dimensional
complex representations of G is a fusion category.

We say a fusion category is a C∗-fusion category if it comes with the additional
structure of an involutive anti-linear contravariant endofunctor ∗, such that the
hom spaces are Banach spaces with respect to the norm induced by ∗, and the
induced norm must satisfy the conditions

∣∣f ○ g∣∣ ≤ ∣∣f ∣∣∣∣g∣∣ and ∣∣f∗ ○ f ∣∣ = ∣∣f ∣∣2.

We say a fusion category is unitary if it is C∗, and additionally, all structure
isomorphisms (such as associators) are unitary. All of the examples of fusion
categories we study in this Thesis are unitary.

A pivotal fusion category is a fusion category along with an isomorphism from
the double dual functor to the identity functor. Any unitary fusion category has
a canonical pivotal structure.
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In a pivotal fusion category C, one can define the dimension of an object.
This definition is a generalisation of the dimension of a representation of a finite
group. Let X ∈ C, then dim(X) is defined as the scalar

evX∗ ○(pvX ⊗ idX∗) ○ coevX ∶ 1→ 1.

This dimension function is additive with respect to direct sums, and multiplicative
with respect to tensor products. When C is unitary, every object has positive
dimension under the canonical pivotal structure.

Given a fusion category C, we define the global dimension of C as

dim(C) ∶= ∑
Irr(C)

dim(X)2,

where Irr(C) is the set of simple objects of C, up to isomorphism.
A braided fusion category is a fusion category along with a natural isomor-

phism called the braiding γX,Y ∶ X ⊗ Y ≅ Y ⊗X that satisfies certain naturality
conditions. For details see [34].

There are two useful invariants one can compute for a pivotal braided fusion
category C. They are the S and T matrices, indexed by simple objects of C.

SX,Y = Y X , TX,X =

X

.

If a pivotal braided tensor category has invertible S-matrix then we say that
the category is modular. An important example of a modular category is the
Drinfeld centre of a spherical fusion category C.

Definition 2.0.3. The Drinfeld centre of C is the modular tensor category Z(C)
whose:

• Objects are pairs (X,γ) where X ∈ C and γ is a natural isomorphism

γ ∶X⊗?→?⊗X

such that for all Y ∈ C we have

γY ⊗Z = (idY ⊗ γZ) ○ (γY ⊗ idZ).

• Morphisms are

Hom((X,γ), (Y,λ)) ∶= {f ∈ HomC(X,Y ) ∶ (idZ⊗f)○γZ = λZ○(f⊗idZ) for all Z ∈ C}.

10



• Tensor product is

(X,γ) ⊗ (Y,λ) ∶= (X ⊗ Y, (γ ⊗ idY ) ○ (idX ⊗ λ)).

• Braiding is
γ(X,γ)⊗(Y,λ) ∶= λX .

For a given fusion category C the collection of monoidal auto-equivalences
of C forms a monoidal category, with the objects being the monoidal auto-
equivalences, and the morphisms being the monoidal natural isomorphisms. We
call this monoidal category Aut⊗(C). Similarly for C a braided category, we
write Autbr(C) for the monoidal category of braided auto-equivalences. We write
Aut⊗(C) to mean the group of tensor auto-equivalences of C, up to natural
isomorphism. Similarly we write Autbr(C) to mean the group of braided auto-
equivalences, up to natural isomorphism.

Graded Categories

Let C be a fusion category, and G a finite group. We say C is G-graded if

C =⊕Cg

for Cg non-trivial abelian subcategories of C, such that the tensor product re-
stricted to Cg ×Ch has image in Cgh.

We say C is a G-graded extension of Ce if C is graded, with trivial component
Ce.

For any fusion category C, we define the adjoint subcategory of C as

Ad(C) ∶= ⟨X ⊗X∗ ∶X ∈ C⟩,

where ⟨.⟩ denotes the full subcategory generated by all subobjects. The category
C is a graded extension of Ad(C).

For a fixed fusion category C, there is a classification of graded extensions of
C. We describe the details of this classification later in this Chapter.

Crossed product fusion categories

Important examples of a graded categories are the crossed product fusion cate-
gories, first defined in [19]. To define a crossed product fusion category, we first
need to define categorical 1-groups.
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Definition 2.0.4. Let G be a finite group. We define the monoidal category G
as the monoidal category whose objects are the elements of G, and morphisms
are identities. The tensor product is the multiplication in G, and the associator
is trivial.

Definition 2.0.5. Let C be a fusion category, G a finite group, ω ∈ H3(G,C×),
and Γ ∶ G→ Aut⊗(C) a monoidal functor. We define C

ω⋊G as the abelian category

⊕
G

C,

with tensor product

(X1, g1) ⊗ (X2, g2) ∶= (X1 ⊗ Γ(g1)[X2], g1g2),

and associator

[(X1, g1) ⊗ (X2, g2)] ⊗ (X3, g3) → (X1, g1) ⊗ [(X2, g2) ⊗ (X3, g3)]

given by the isomorphism

ωg1,g2,g3 idX1 ⊗τ
g1
X2,Γ(g2)[X3]

○ idX1 ⊗ idΓ(g1)[X2]⊗µg1,g2.

Here τ g1 is the tensorator for the functor Γ(g1), and µ is the tensorator for the
functor Γ.

Crossed product fusion categories are of interest to us as they will appear in
our classification of unitary categories generated by a normal object of dimension
less than 2.

Module Categories and Bimodule Categories

Here we define module categories, algebra objects, bimodules categories, and the
Brauer-Picard group.

Definition 2.0.6. [45] A left module category M over a fusion category C is a
semi-simple C-linear category along with a functor ⊗ ∶ C ×M →M , and natural
isomorphisms (X⊗Y )⊗M →X⊗(Y ⊗M) satisfying a straightforward pentagon
equation.

Example 2.0.7. The category Vec, of finite dimension vector spaces, is a module
category over the fusion category Rep(G) for every finite group G. The action is
given via the forgetful functor Rep(G) → Vec.

12



Strongly related to the theory of modules over fusion categories are algebra
objects in fusion categories.

Definition 2.0.8. [45] An algebra object in a fusion category is an object A
together with morphisms 1 → A and A ⊗ A → A satisfying associator and unit
axioms.

One can define left (right) module objects over an algebra A in C. The
category of left (right) A modules in C forms a right (left) module category
over C, we write A − mod for this category. A result of Ostrik [45] shows that
every right (left) semisimple module category over C arises as the category of left
(right) A-modules for some algebra A in C. Similarly the category of bimodule
objects over an algebra A forms a fusion category, we write A-bimod for this
fusion category.

The following Lemma about algebra objects will be useful later in this Thesis.

Lemma 2.0.1. Let G be a finite group, and C ≃ ⊕GCg be a G-graded fusion
category. If A ∈ Ce is an algebra object then

A − bimodC ≃⊕
G

A − bimodCg ,

where
A − bimodCg ∶= Cg ∩ (A − bimodC).

Proof. There is a fully faithful functor ⊕GA − bimodCg to A − bimodC simply
given by forgetting the homogeneous grading. Each of the A − bimodCg is an
invertible bimodule over A − bimodCe , so each has global dimension equal to
that of A − bimodCe . The global dimension of ⊕GA − bimodCg is therefore
∣G∣dim(A − bimodCe) = ∣G∣dim(Ce). The global dimension of A − bimodC is
dim(C) = ∣G∣dim(Ce). Thus the above functor is a fully faithful functor between
categories with the same global dimensions, and hence is an equivalence by [12,
Proposition 2.11].

A slight generalisation of a module category over C, is the notion of a bimodule
category over C. This is a straightforward generalisation where now the category
C can act on both the left and right, and there is the additional structure of an
isomorphism relating the left and right actions (see [22] for an explicit definition).

Given a C bimodule and an auto-equivalence of C, one can construct a new
bimodule. This construction will be important later in this thesis.
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Definition 2.0.9. Let M be a bimodule category over C, and F ∶ C → C a
monoidal auto-equivalence. We define a new bimodule FM , which is equal to M
as a right module category, and with left action given by

X ▷
FM m ∶= F (X) ▷M m.

The structure morphisms for FM consist of a combination of the structure mor-
phisms for M , and the tensorator of F .

Given two bimodules (whose sources and targets correspond) we can define
their relative tensor product, which is a new bimodule category.

Definition 2.0.10. [17] Let M,N be bimodule categories over C. The tensor
product of M with N is a semi-simple category M ⊠C N together with a C-
balanced functor (see [22] for a definition)

BM,N ∶M ×N →M ⊠C N

inducing, for every semi-simple category A, an equivalence between the category
of C-balanced functors fromM×N to A and the category of functors fromM⊠CN
to A:

Funbal(M ×N,A) ≅ Fun(M ⊠C N,A).

Using this tensor product of bimodules we can define the Brauer-Picard group
of C.

Definition 2.0.11. Let C be a fusion category. The Brauer-Picard group of
C,which we denote BrPic(C), is the group of invertible C-bimodules with respect
to the relative tensor product.

In practice the Brauer-Picard group of a fusion category is extremely hard
to compute directly. Thankfully the following isomorphism of groups gives us an
alternative way to compute it.

Autbr(Z(C)) ≅ BrPic(C).

This isomorphism is proved in Theorem 1.1 of [17].

The classification of graded categories

Here we recall the classification of graded extensions from [17]. This classifica-
tion result will play a large role in this Thesis, as we plan to classify all cyclic
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extensions, generated by a normal object of dimension less than 2, of the adjoint
subcategories of the ADE fusion categories.

An important piece of data in the classification of graded extensions of a
fusion category C is BrPic(C), the 3-group of invertible bimodules over a fusion
category C. This is a categorification of Brauer-Picard group of C defined earlier.
More details can be found in the papers [22, 17].

We have in BrPic(C) that there is a single 0-morphism, the category C. The
1-morphisms from C → C are the invertible C bimodules M , the 2-morphisms
M → N are bimodule equivalences F , and 3-morphisms F → G are natural iso-
morphisms of bimodule functors µ. Composition at the 2-level is the composition
○ of bimodule functors, and composition at the 3-level is the vertical composition
⋅ of natural transformations. Composition at the 1-level is given by the relative
tensor product of bimodule categories.

Recall from [17] that G-graded extensions of C are classified by

• a group homomorphism c ∶ G → BrPic(C), such that a certain element
o3(c) ∈H3(G, Inv(Z(C))) is trivial,

• an element M of an H2(G, Inv(Z(C)))-torsor, such that a certain element
o4(c,M) ∈H4(G, Inv(Z(C))) is trivial,

• an element A of an H3(G,C×)-torsor.

Here the element M is a collection of bimodule equivalences Mg,h ∶ cg ⊠ ch → cgh,
and the element A is a collection of bimodule natural isomorphisms

Af,g,h ∶Mfg,h(Mf,g ⊠ Idch) →Mf,gh(Idcf ⊠Mg,h).

The action of T ∈H2(G, Inv(Z(C))) on M is given by

(T ▷M)g,h ∶= Tg,h ⊠Mg,h,

and the action of H3(G,C×) on A is simply given by scaling. Formulas for the
obstructions o3(c) and o4(c, T ) can be found in [17, Section 8], and graphical
descriptions can be found in [14, Section 4].

With the triple of data (c,M,A) we can reconstruct the corresponding graded
extension as follows. As a plain abelian category, the extension is

⊕
G

cg.

The tensor product is given by M , and the associativity isomorphisms are given
by A.
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We note that this classification of graded extensions is only up to equiva-
lence of extensions, and not monoidal equivalence. An equivalence of extensions
is a monoidal equivalence that is the identity on the trivially graded piece, and
preserves the grading. An example of the difference between equivalence of ex-
tensions, and monoidal equivalence can be seen in the categories Vecω(Z/5Z) for
ω ∈ H3(Z/5Z,C×), thought of as a Z/5Z graded extension of Vec. Considered
up to equivalence of extensions, every element of H3(Z/5Z,C×) gives a distinct
extension. However up to monoidal equivalence, there are only three distinct
categories.. In practice this means that our classification of unitary categories
generated by a normal object of dimension less than 2 is not up to monoidal
equivalence. More detail on this over-counting of graded extensions, and attempts
to remedy the situation, can be found in the author’s paper [14]. In particular
several examples are given that show exactly how over-counting occurs.

There is also the problem that this extension theory does not deal with unitary
structures. This has been remedied in [20] where it is shown in Remark 5.16 that
if a unitary fusion category C is completely unitary (as defined in the same
paper), then any graded extension of C is monoidally equivalent to a unitary
fusion category. Thankfully for us, as we will see later in this thesis, the adjoint
subcategories of the ADE fusion categories are all completely unitary.

Planar Algebras

Planar algebras were first introduced in [31] as an axiomatisation of the standard
invariant of a subfactor.

Definition 2.0.12. A planar algebra is a collection of vector spaces {Pn ∶ n ∈ N}
along with a multi-linear action of planar tangles.

For more details see the above mentioned paper.
Given a planar algebra such that P0 ≅ C one can construct a pivotal rigid

monoidal category and vice versa.

Definition 2.0.13. [40] Given a planar algebra P we construct a strict monoidal
category CP as follows:

• An object of CP is a projection in some algebra P2n.

• For two projections π1 ∈ P2n, π2 ∈ P2m the morphism space Hom(π1, π2) is
the vector space π1Pn+mπ2.
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• The tensor product of two projections is the disjoint union.

• The tensor identity is the empty picture.

For direct sums to make sense in this constructed category one has to work in
the matrix category of CP where objects are formal direct sums of objects in CP
and morphisms are matrices of morphisms in CP . For more details on the matrix
category see [40].

For simplicity of notation when we will write P for both the planar algebra
P , and the matrix category of CP as constructed above. The context of use
should make it clear to the reader if we are referring to the planar algebra or
corresponding monoidal category.

Conversely, given a pivotal rigid monoidal category C, along with choice of
symmetrically self-dual objectX, one can construct a planar algebra PA(C;X)n ∶=
HomC(1 → X⊗n). More details can be found in [27], where it is shown that this
construction is inverse to the one described in Definition 2.0.13.

Some of the simplest examples of planar algebras are the ADE planar alge-
bras. These are two infinite families AN and D2N , and two sporadic examples,
E6 and E8. These planar algebras were given the following generator and rela-
tion presentations in [40, 2]. The ADE planar algebras (and associated fusion
categories) are the main objects of study in this thesis.

To describe the ADE planar algebras, and the planar algebras in the rest of
this paper, we adopt the notation of [2] for this paper so that for a diagram X:

ρ(X) ∶= X , τ(X) ∶= X , X̂ ∶= X .

Composition of two elements in P2N is given by vertical stacking with N

strings pointing up and N strings pointing down.

Definition 2.0.14. Let q be a root of unity. For n a natural number we define
the quantum integer [n]q ∶= qn−q−n

q−q−1 .

Definition 2.0.15. [49] We define the Jones-Wenzl idempotents f (n) in a planar
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algebra P via the recursive relation:

⋯

⋯
f (n+1) =

⋯

⋯
f (n) −

[n]q
[n + 1]q ⋯

⋯
f (n)

⋯

⋯
f (n)

.

The AN planar algebras have loop parameter [2]q, no generators, and a single
relation. The D2N , E6, and E8 planar algebras have loop parameter [2]q, a single
uncappable generator S ∈ Pk with rotational eigenvalue ω, satisfying relations as
in the following table. Definition of all these planar algebra terms can be found
in [2].

q k ω additional relations

AN ±e iπ
N+1 - - f (N) = 0

D2N ±e iπ
4N−2 4N − 4 ±i S ⊗ S = f (2N−2)

f (4N−3) = 0

E6 ±e± iπ12 6 q16 S2 = S + [2]2
q[3]qf (3)

Ŝ ○ f (8) = 0

E8 ±e± iπ30 10 q36 S2 = S + [2]2
q[3]qf (5)

Ŝ ○ f (12) = 0.

Note that there are two distinct AN planar algebras, and four for each of the
other Dynkin diagrams. We give distinguished names to some of these different
planar algebras. We will write AN for the planar algebra with q = e iπ

N+1 . We write
D+

2N for the planar algebra with q = e iπ
4N−2 and ω = i, and D−

2N for the planar
algebra with q = e

iπ
4N−2 and ω = −i. We write E+

6 for the planar algebra with
q = e iπ12 , and E−

6 for the fusion category with q = e−iπ12 . In a similar fashion we
write E+

8 for the planar algebra with q = e iπ30 , and E−
8 for the fusion category with

q = e−iπ30 .

Remark 2.0.2. The AN planar algebras can be equipped with a braiding. There
are multiple different braidings one can choose. The two we will use in this paper
are the standard braiding
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= iq 1
2 − iq −12

and the opposite braiding

= −iq −12 + iq 1
2 .

We call these braided planar algebras AN and Abop
N respectively.

From these (braided) planar algebras we get (braided) fusion categories via
the idempotent completion construction described earlier. In fact these categories
are unitary. We call the resulting unitary fusion categories, the ADE fusion
categories. We present the simple objects of these categories in graph form.
The vertices are the simple objects of the fusion category and the number edges
between two simple objects X and Y counts the number of copies of Y in X

tensored with the single strand f (1) ∈ P2. Presenting this information in graph
form makes clear our choice of naming convention.

AN : f (0) f (1) f (2) f (N−2) f (N−1)

D±
2N : f (0) f (1) f (2) f (2N−3)

P

Q

E±
6 :

f (0) f (1) f (2)

X

Y Z

E±
8 :

f (0) f (1) f (2) f (3) f (4)

U

V W

Where:
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• P ∶= f(2N−2)+S
2 ,

Q ∶= f(2N−2)−S
2 in D2N

• X ∶= 1√
3
f (3) + (1 − 2√

3
)S,

Y ∶= (1 − 1√
3
) f (3) + (−1 + 2√

3
)S,

Z ∶=
⋯

⋯
Y - [3]q

[2]q ⋯

⋯
Y

⋯

⋯
Y

, in E6

• U ∶= 1
4 (−

√
5 +

√
6 (1 + 1√

5
) + 1) f (5) + 1

2 (
√

5 −
√

6 (1 + 1√
5
) + 1)S,

V ∶= 1
4 (

√
5 −

√
6 (1 + 1√

5
) + 3) f (5) + 1

2 (−
√

5 +
√

6 (1 + 1√
5
) − 1)S,

W ∶=
⋯

⋯
V - [5]q

φ[2]q ⋯

⋯
V

⋯

⋯
V

, in E8.

Each of these categories is Z/2Z-graded. The trivially graded piece of this
grading is also a fusion category. These subcategories are the adjoint subcat-
egories. While there were two AN unitary fusion categories, these both have
the same adjoint subcategory which we call Ad(AN). Similarly while there were
four D2N unitary fusion categories, these all have the same adjoint subcategory,
which we simply call Ad(D2N). The situation is slightly different for the E6 and
E8 cases. The adjoint subcategories of E+

6 and E−
6 are monoidally inequivalent,

we write Ad(E+
6 ) and Ad(E−

6 ) for these two fusion categories. Similarly the ad-
joint subcategories of Ad(E+

8 ) and Ad(E−
8 ) are monoidally inequivalent, we write

Ad(E+
8 ) and Ad(E−

8 ) for these two fusion categories.
The fusion graphs for the adjoint subcategories of the ADE fusion categories

are as follows:
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Ad(A2N) :
f (0) f (2) f (4) f (2N−2)

Ad(A2N+1) :
f (0) f (2) f (4) f (2N−2) f (2N)

Ad(D2N) : f (0) f (2) f (4) f (2N−4)

P

Q

Ad(E±
6 ) :

f (0) f (2) Z

Ad(E±
8 ) :

f (0) f (2) f (4) W

Planar algebra presentations for these adjoint subcategories can be acquired
by taking the sub-planar algebra generated by the strand f (2) inside the full planar
algebra. We explicitly describe the planar algebras for Ad(A2N) and Ad(D2N)
as we will need them later on in this Thesis.

The Ad(AN) planar algebra has a single generator T ∈ P3 (which we draw as
a trivalent vertex) with the following relations (with q = e πi

N+1 ):

1. = [3]q,

2. ρ(T ) = T ,

3. τ(T ) = 0,

4. = ( [3]q−1
[2]q

) ,

5. − = 1
[2]q

− 1
[2]q

.

The Ad(D2N) planar algebra has two generators T ∈ P3 (again drawn as a
trivalent vertex), and S ∈ P2N−2 with all the relations of the Ad(A4N−3) planar
algebra, along with :

1. ρ(S) = −S,
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2. τ(S) = 0,

3. S ○ (T ⊗ IdN−3) = 0,

4. S ⊗ S = f (N−1).

As the Ad(AN) planar algebras are sub-planar algebras of the AN planar
algebras they inherit the braiding, so can also be thought of as braided planar
algebras. We can now also equip the Ad(D2N) planar algebras with a braiding.
The two braidings on Ad(D2N) that we care about are

= (q2 − 1) + q−2 - (q2 − q−2) ,

and

= q−2 + (q2 − 1) - (q2 − q−2) ,

We call these braided planar algebras Ad(D2N) and Ad(D2N)bop.
Note that there is some ambiguity in how we think of the objects of the

adjoint subcategory. In the above fusion graphs the simple objects come directly
from the corresponding full category, so the generating object for each of these
is f (2). Yet if we construct the fusion categories from the above planar algebras
the generating object will now be called f (1). To fix a convention for the rest of
this thesis we will regard objects of the adjoint subcategory as objects of the full
category.

The following theorem regarding the ADE and Ad(A2N) planar algebras is
well known, however the author was unable to find a proof in the literature. For
completeness we include our own version of the proof.

Theorem 2.0.3. Let C be a unitary fusion category generated by a symmet-
rically self-dual object X of dimension less than 2. Then C is the idempotent
completion of one of the AN , Ad(A2N), D2N , E6, or E8 planar algebras.

Proof. As the dimension of X is less than 2, it must be equal to q + q−1 for q
some primitive N -th root of unity. Furthermore as C is unitary we must have
that q = ±e iπ

N+1 .
Consider the planar algebra PA(C;X), as defined earlier. Due to the piv-

otality of C, this planar algebra contains a copy of the AN planar algebra, with
choice of q as above. Thus there is a planar algebra injection

AN → PA(C;X).
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As X tensor generates C, we can apply [27, Theorem A] to get a dominant tensor
functor

AN → C,

now thinking of AN as a fusion category. Thus from [8, Cor 5.6] there exists a
commutative central algebra (an algebra object along with lift to the centre, such
that the corresponding algebra in the centre is commutative) (A,σ) ∈ AN such
that

C ≃modAN (A,σ).

Here we adopt the notation of [8].
The commutative algebras in the categories AN have been computed in [45]

(in the language of quantum groups). They are

• 1 for all N , which has a unique central structure. The fusion graph for the
corresponding fusion category is AN .

• 1⊕f (N−1) whenN is even and q = e iπ
N+1 , which has a unique central structure.

The fusion graph for the corresponding fusion category is TN
2
.

• 1 ⊕ f (N−1) when N (mod 4) ≡ 1, which has two central structures (which
we call ±). The fusion graph for the corresponding fusion category is DN+3

2
.

• 1 ⊕ f (6) when N = 11, which has two central structures. The fusion graph
for the corresponding fusion category is E6.

• 1⊕ f (10)⊕ f (18)⊕ f (28) when N = 29, which has two central structures. The
fusion graph for the corresponding fusion category is E8.

The algebra structures on each of these objects is unique.
The result now follows from a straightforward counting argument. We explic-

itly spell out the D2N case, and leave the others to the reader.
For a fixed N , we count the number of D2N planar algebras. We have two

choices to make, q = ±e iπ
4N−2 , and ±i for the rotational eigenvalue of S. Thus there

are 4 D2N planar algebras. Each of these planar algebras can be idempotent com-
pleted to give a unitary category generated by a symmetrically self-dual object
of dimension less than 2. These pivotal fusion categories have fusion graph D2N

for tensoring with the object of dimension less than 2.
On the other hand, if we have a pivotal fusion category generated by an

symmetrically self-dual object X of dimension less than 2, with D2N fusion graph
for tensoring by X, then the above argument shows that this category must be
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modAN (1⊕ f 4N−4,±) for q = ±e iπ
4N−2 . There are four such categories, thus each of

these categories can be realised as the idempotent completion of a D2N planar
algebra.

Remark 2.0.4. The above proof can be slightly altered to classify pivotal cate-
gories generated by an object of Frobenius-Perron dimension less than 2, without
a unitarity condition. The classification now includes all Galois conjugates of the
AN , Ad(A2N), D2N , E6, and E8 planar algebras.

The aim of this thesis will be to generalise the above classification. We will
focus on removing the self-dual condition, though many other generalisations
are feasible. While a classification for an arbitrary object is still out of reach,
Theorem 1.0.1 gives an approach towards classifying a significant subset. This
subset will be the unitary categories generated by a normal object of dimension
less than 2.

Definition 2.0.16. We say an object X is normal if X ⊗X∗ ≅X∗ ⊗X.

Note that the definition of normal requires no conditions on the isomorphism
X ⊗X∗ →X∗ ⊗X.

For completeness, we communicate a proof of Theorem 1.0.1, supplied by
Scott Morrison and Noah Snyder.

Proof of Theorem 1.0.1. Let C be a unitary fusion category tensor generated by
a normal object X of dimension less than 2. We form the shaded planar algebra
(see [31] for a definition):

Pn,+ ∶= Hom(1→ (X ⊗X∗)⊗n) Pn,− ∶= Hom(1→ (X∗ ⊗X)⊗n).

By the classification of subfactors of index less than 4, this shaded planar algebra
is actually unshaded, and must be one of the ADE planar algebras.

We now claim that the adjoint subcategory of C is tensor generated byX⊗X∗.
Let Y ∈ Ad(C), then by definition Y is a sub-object of Z ⊗ Z∗ for some Z ∈ C.
As X tensor generates C, we have that Z is a sub-object of X⊗k ⊗X∗⊗l for some
positive integers k and l. Thus we have that Y is a sub-object of X⊗k ⊗X∗⊗l ⊗
X⊗l ⊗X∗⊗k, and thus, using normality of X, a sub-object of (X ⊗X∗)k+l.

Putting everything together we get that Ad(C) is equivalent to ⟨X ⊗ X∗⟩.
As P has to be an ADE planar algebra we have that Ad(C) is the adjoint
subcategory of an ADE fusion category.
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Chapter 3

The Brauer-Picard groups of the
adjoint subcategories of the ADE
fusion categories

With Theorem 1.0.1 in mind, we want to classify certain cyclic extensions of
the adjoint subcategories of the ADE fusion categories. The recipe for such
a classification, as laid out in [17] (and described in Chapter 2), suggests that
the first step should be to compute the Brauer-Picard groups of these fusion
categories. In this Chapter, we will prove the following Theorem.

Theorem 3.0.1. We have the following:

C BrPic(C)

Ad(AN) N = 3 Z/2Z
N = 7 D2⋅4

N ≡ 0 (mod 2) {e}
N ≡ 1 (mod 4) Z/2Z
N ≡ 3 (mod 4) and N ≠ {3,7} (Z/2Z)2

Ad(D2N) N = 5 (S3)2

N ≠ 5 (Z/2Z)2

Ad(E±
6 ) Z/2Z

Ad(E±
8 ) Z/2Z.

For the examples we are interested in it turns out to be quite difficult to
compute the invertible bimodules explicitly, such as was done in [24]. Thankfully
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the isomorphism of groups from [17]:

BrPic(C) ≅ Autbr(Z(C)), (3.0.1)

allows an alternate method to compute the Brauer-Picard group of a fusion cate-
gory. Here Autbr(Z(C)) is the group of braided auto-equivalences of the Drinfeld
centre of C. We find the latter group much easier to compute, and hence spend
this Chapter computing Drinfeld centres and braided auto-equivalence groups,
rather than a direct computations of invertible bimodules. Although in a few
difficult cases we use both descriptions, utilising the relative strengths of both.

Our main tool to compute braided auto-equivalences of categories is via the
braided automorphisms of their associated braided planar algebras. It has long
been known that there is a one-to-one correspondence between pivotal categories
with a distinguished generating object, and planar algebras. This correspondence
turns out to be functorial. In particular we have the following:

Proposition 3.0.1. Let P a be (braided) planar algebra, and CP be the associ-
ated pivotal (braided) tensor category with distinguished generating object X. Let
Autpiv(CP ;X) be the group of pivotal (braided) auto-equivalences of CP that fix X
on the nose (see [27] for a definition of pivotal functors), and Aut(P ) be the group
of (braided) planar algebra automorphisms of P . Then there is an isomorphism
of groups

Aut(P ) ∼Ð→ Autpiv(CP ;X).

This proposition is a direct consequence of [27, Theorem 2.4]. While the fact
that planar algebra automorphisms only give us pivotal auto-equivalences of the
corresponding category may seem restrictive, it turns out that all of the auto-
equivalences we care about in this Chapter are pivotal (although not a priori).
In particular the gauge auto-equivalences (auto-equivalences whose underlying
functor is the identity) of a pivotal category are always pivotal functors when
the category has trivial universal grading group, or when every object of the
category is self-dual. These two cases include every category we consider in this
Chapter. While it seems somewhat reasonable to expect gauge auto-equivalences
are always pivotal, regardless of extra assumptions on the category, the author
was unable to produce a general proof.
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3.1 The Drinfeld Centres of the ADE fusion cat-
egories

As stated earlier, the main aim of this Chapter is to compute the Brauer-Picard
groups of the adjoint subcategories of the ADE fusion categories. We do this
via computing the braided auto-equivalence groups of the Drinfeld centre. This
Section is devoted to computing these centres. With Proposition 3.0.1 in mind is
natural to want planar algebra presentations of the centres.

The centres of the full ADE fusion categories are computed in [6, 15, 9].

Z(AN) ≃ AN ⊠Abop
N ,

Z(D+
2N) ≃ A4N−3 ⊠Ad(D2N)bop,

Z(E+
6 ) ≃ A11 ⊠A3,

Z(E+
8 ) ≃ A29 ⊠Ad(A4)bop.

Note that we have given planar algebra presentations for the factors of these
products in Chapter 2.

The centres of the adjoint subcategories have yet to be described in the liter-
ature. When the adjoint subcategory admits a modular braiding the centres are
trivial to compute.

Lemma 3.1.1.

Z(Ad(A2N)) ≃ Ad(A2N) ⊠Ad(A2N)bop

Z(Ad(D2N)) ≃ Ad(D2N) ⊠Ad(D2N)bop

Proof. These fusion categories admit modular braidings, thus by a theorem of
Muger [43] the centres are as described.

To compute the centres of the rest of the adjoint subcategories we appeal
to a theorem of Gelaki, Naidu and Nikshych (stated below) which allows us to
compute the centre of Ad(C) given the centre of C. As we know the centres of all
the ADE fusion categories we are able to get explicit descriptions of the centres
of the corresponding adjoint subcategories. We explicitly describe the details this
theorem as we will be using it extensively for the rest of this Section.

Construction 3.1.2. [21, Corollary 3.7] Let C be a G-graded fusion category, with
trivially graded piece C0. Consider all objects in the centre of C that restrict
to direct sums of the tensor identity in C. These objects form a subcategory
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equivalent to Rep(G). If we take the centraliser (see [43] for details) of the
Rep(G) subcategory of Z(C), and de-equivariantize by the distinguished copy of
Rep(G), then the resulting category is braided equivalent to Z(C0).

Straight away we can use this construction to get an explicit description of
the centre of Ad(E+

8 ).

Lemma 3.1.3. Z(Ad(E+
8 )) ≃ Ad(D16) ⊠Ad(A4)bop

Proof. As there are only two simple objects of dimension 1 in A29 ⊠ Ad(A4)bop

it follows that the Rep(Z/2Z) subcategory we are interested in must be the
Rep(Z/2Z) subcategory of A29. We compute the centralizer of this subcategory to
be Ad(A29)⊠Ad(A4)bop. The result now follows as de-equivariantizing commutes
with the taking of the adjoint subcategory, and A29//Rep(Z/2Z) =D16.

This Lemma also appeared with slightly different language in [5].

Remark 3.1.4. While the centre of Ad(E−
8 ) is also monoidally equivalent to

Ad(D16)⊠Ad(A4)bop, in this case the equivalence is not braided (for our choice of
braidings on Ad(D16) and Ad(A4)). Infact it is braided equivalent to Ad(Dbop

10 )⊠
Ad(A4).

Planar Algebras for the Drinfeld Centres of Ad(A2N+1) and
Ad(E+

6 )

While we can apply the same techniques as in computing Z(Ad(E+
8 )) to comput-

ing Z(Ad(A2N+1)) and Z(Ad(E+
6 )), the resulting categories don’t naively have

a planar algebra presentation. To achieve such a presentation we work through
Construction 3.1.2 on the level of the planar algebra.

We start by looking at the Ad(A2N+1) family. The Rep(Z/2Z) subcategory in
A2N+1 ⊠ Abop

2N+1 that we are interested in is generated by the simple object f (2N)

⊠ f (2N). The centralizer of this subcategory is the subcategory of A2N+1 ⊠ Abop
2N+1

generated by the simple object f (1) ⊠ f (1). Note that ⟨f (1) ⊠ f (1)⟩ is the tensor
product planar algebra of A2N+1 with Abop

2N+1 (see [31, Section 2.3] for details on
the tensor product of planar algebras).

The planar algebra for ⟨f (1) ⊠ f (1)⟩ can easily be described using basis vectors
for the vector spaces. Let {ti} be the standard Temperley-Lieb basis of planar
diagrams for Pn of the planar algebra associated to A2N+1. Then a basis for Pn
for the planar algebra of ⟨f (1) ⊠ f (1)⟩ are the vectors {ti⊠ tj}. Diagrammatically
we can think of these basis vectors as a superposition of the two original basis
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vectors. Unfortunately this simple basis description of the planar algebra is not
useful for computing automorphisms nor for taking de-equivariantizations. We
want to find a generators and relations description (as in [2, 40]) as it is much
better suited for these tasks.

The single strand in the ⟨f (1) ⊠ f (1)⟩ planar algebra is going to be the super-
position of the red and blue strands, that is:

:= .

Unfortunately just the strand does not generate the entire planar algebra, for
example we can not construct the diagram

∈ P4

using just the single strand. However it is proven in [38, Theorem 3.1] that the
element

Z ∶= [2]−1
q ∈ P4

does generate everything.

A generators and relations presentation of the braided planar algebra for ⟨f (1)

⊠ f (1)⟩ is given by
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(1) q = e πi
2N+2 , (2) = [2]2,

(3) Z = , (4) Z = , (5) ρ2
⎛
⎜
⎝

Z
⎞
⎟
⎠
= Z ,

(6)
Z

Z

= Z , (7)
Z

Z
= Z , (8)

Z

Z

= [2]−2
q ,

(9)
Z Z

=

Z

Z

=

Z

Z

,

(11) = + − q Z − q−1 Z .

(12) f (2N+1) ⊠ f (2N+1) = 0.

All of these relations can easily be checked to hold in ⟨f (1) ⊠ f (1)⟩ by using
the definition of Z. We have certainly overdone the number the relations required
for this planar algebra. For example relations (3) + (5) + (9) imply relation (6).
We have included the additional relations as it makes evaluation easier and there
is little overhead in showing that the extra relations hold for Z.

To prove that we have given sufficient relations we need to show that we can
evaluate any closed diagram. We can think of a closed diagram in the ⟨f (1) ⊠
f (1)⟩ planar algebra as a 4-valent graph, with the vertices being Z’s or ρ(Z)’s.
Any closed 4-valent graph must contain either a triangle, bigon or a loop. We
can remove a loop with relations 3 and 4. We can pop bigons with relations 6, 7

and 8. Thus to complete our evaluation argument all we need to do is show that
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triangles can be popped as well.

Lemma 3.1.5. Suppose D is a diagram containing three Z’s as a triangle, then
using the above relations D can be reduced to a diagram with at most two Z’s.

Proof. In D two of the Z’s must form one of the diagrams appearing in relation
9. Locally apply the relation to D to obtain a diagram with two Z’s forming a
bigon. Pop this bigon using one of relations 6, 7, or 8 to obtain a diagram with
one or two Z’s.

By repeatedly popping triangles, bigons, and closed loops eventually one ends
up at a scalar multiple of the empty diagram.

To de-equivariantize the ⟨f (1) ⊠ f (1)⟩ planar algebra by the subcategory ⟨f (2N)

⊠ f (2N)⟩ we need to add an isomorphism from the tensor identity to f (2N) ⊠ f (2N).
In planar algebra language this corresponds to adding a generator S ∈ P2N such
that SS−1 =f (2N) ⊠ f (2N)∈ P4N and S−1S = 1 ∈ P0. Note that by taking the trace
of the first condition we arrive at the second.

See [40] for an example of this in which they de-equivariantize the A4N−3

planar algebra to obtain a planar algebra for D2N . By doing the same procedure
we arrive at the following presentation of the planar algebra for the centre of
Ad(A2N+1).

Proposition 3.1.1. The braided planar algebra for the Drinfeld centre of Ad(A2N+1)
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has 2 generators Z ∈ P4 and S ∈ P2N satisfying the following relations:

(1) q = e πi
2N+2 , (2) = [2]2

q,

(3) Z = , (4) Z = , (5) ρ2
⎛
⎜
⎝

Z
⎞
⎟
⎠
= Z

(6)
Z

Z

= Z , (7)
Z

Z
= Z , (8)

Z

Z

= [2]−2
q ,

(9)
Z Z

=

Z

Z

=

Z

Z

,

(10)
S

S

= f (2N) ⊠ f (2N) , (11) S

A
ny

diagram with

no
S
’s = 0,

(12) = + − q Z − q−1 Z ,

(13) f (2N+1) ⊠ f (2N+1) = 0.

Again we have almost certainly overdone the relations to obtain a nice evalu-
ation algorithm. However now it is not so obvious why relation (11) should exist
in this planar algebra.
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Consider a diagram D that only contains a single S. By attaching an S to
the bottom of relation (10) we get the relation:

S =

S

f (2N) ⊠ f (2N)

Therefore in D we can fit a f (2N) ⊠ f (2N) between the S and the rest of the
diagram. Consider the blue component of the diagram. There must be a blue
cap on f (2N) which kills the diagram.

The reader might argue that relation (11) isn’t really a satisfying relation, as
it really involves an infinite number of diagrams. The relation is also non-local
as it is defined on entire diagrams. It appears that in the Z(Ad(A2N+1)) planar
algebra one can deduce relation (11) from relation (10). However this argument
is fairly lengthy. As the above presentation is sufficient for our purposes in this
Chapter we omit this argument and work with the less satisfying relations. As
we will see soon, the planar algebra for Z(Ad(E+

6 )) has a similar unsatisfying
relation. For this case we are unsure if the relation can be deduced from the
others, though we suspect that it can.

Proof of Proposition 3.1.1. To show that we have given enough relations we have
to show that any closed diagram can be evaluated to a scalar. If we have a
diagram with multiple S’s, then using the fact that the planar algebra is braided
along with relation (10) we can reduce to a diagram with 0 or 1 S’s. See [40]
for an in depth description on how this algorithm works. We have already shown
that any diagram with 0 S’s can be evaluated. Relation (11) exactly says that
any diagram with 1 S is evaluated to 0 as in such a diagram there must be a cup
between two adjacent strands of S.

We now claim that this planar algebra is exactly the planar algebra for the
de-equivariantization of ⟨f (1) ⊠ f (1)⟩ by the copy of Rep(Z/2Z) ≃ ⟨f (2N) ⊠ f (2N)⟩.
To see this notice that the above planar algebra has an order two automorphism
S ↦ −S. Taking the fixed point planar algebra under this action of Z/2Z gives the
sub-planar algebra consisting of elements with an even number of S’s. However
the braiding along with relation (10) implies that such a diagram is equal to a
diagram with no S’s. Hence the fixed point planar algebra recovers the planar
algebra for ⟨f (1) ⊠ f (1)⟩.
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Theorem 4.44 of [12] states that braided fusion categories containing Rep(G),
and G-crossed braided fusion categories, are in bijection via equivariantization,
and de-equivariantization. As the braided tensor category associated to the above
planar algebra equivariantizes to give ⟨f (1) ⊠ f (1)⟩, it follows that the braided
tensor category associated to the above planar algebra is a de-equivariantization
of ⟨f (1) ⊠ f (1)⟩ by some copy of Rep(Z/2Z). We have to show that the copy of
Rep(Z/2Z) is precisely ⟨f (2N) ⊠ f (2N)⟩.

When N is odd there is a unique copy of Rep(Z/2Z) in ⟨f (1) ⊠ f (1)⟩ and so
the claim is trivial. When N is even there are 3 distinct copies, generated by the
objects f (0) ⊠ f (2N), f (2N) ⊠ f (0), and f (2N) ⊠ f (2N). The de-equivariantizations
corresponding to these subcategories are ⟨f (1) ⊠ f (1)⟩ ⊂ A2N+1 ⊠ Dop

N+2, ⟨f (1) ⊠
f (1)⟩ ⊂ DN+2 ⊠ Aop

2N+1, and Z(Ad(A2N+1)).

The former two categories don’t admit braidings, and hence can’t come from
the above planar algebra. Thus the corresponding fusion category for the above
planar algebra is Z(Ad(A2N+1)).

Note that when N = 1 we have a generators and relations presentation of the
planar algebra associated to Z(Rep(Z/2Z)), the toric code.

The computation for the centre of Ad(E+
6 ) is almost identical, except we now

start with the A11 ⊠ Abop
3 planar algebra. The only difference in the computation

is that the object f (10) ⊠ f (2) doesn’t naively make sense in planar algebra lan-
guage. To deal with this one has to choose an isomorphic copy of f (2) living in P20

boxspace of the Abop
3 planar algebra. For example you can choose the projection:

1
4 f (2) .

The resulting planar algebra for the centre is as follows:

Proposition 3.1.2. The braided planar algebra for the Drinfeld centre of Ad(E+
6 )
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has 2 generators Z ∈ P4 and S ∈ P10 satisfying the following relations:

(1) q = eπi12 , (2) =
√

2[2]q,

(3) Z = , (4) Z =
[2]q√

2
, (5) ρ2( Z ) = Z ,

(6)
Z

Z

= Z , (7)

Z
Z

=
[2]q√

2

Z , (8)
Z

Z

= 1

2
,

(9)
Z Z

=

Z

Z

=

Z

Z

,

(10)
S

S

= f (10) ⊠ f (2) , (11) S

A
ny

diagram with

no
S
’s = 0,

(12) = q−1 Id+q − q2
Z − q−2 Z ,

(13) f (11) ⊠ f (3) = 0.

Proof. As mentioned this proof is almost identical to the Z(Ad(A2N+1)) case. In
fact there is a unique copy of Rep(Z/2Z) in A11 ⊠ Abop

3 which causes this case to
be simpler.
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Remark 3.1.6. Note that we haven’t explicitly given descriptions of f (2N) ⊠ f (2N)

and f (10) ⊠ f (2) in terms of the generator Z. This is because these descriptions
are particularly nasty to write down. We just appeal to the existence of such a de-
scription from [36, Theorem 4]. If the reader requires a better description one can
be obtained by applying the Jones-Wenzl recursion formula to both idempotents
and rewriting the resulting recursive formula in terms of Z’s and ρ(Z)’s.

3.2 Planar algebra automorphisms and auto-equivalences
of tensor categories

Planar Algebra Automorphisms

As mentioned earlier in this Chapter we wish to compute the auto-equivalence
group of a fusion category by studying the associated planar algebra. In [27]
the authors show an equivalence between the categories of (braided) planar al-
gebras and the category of (braided) pivotal categories with specified generating
object. As described in that paper the latter category is really a 2-category, with
1-morphisms being pivotal functors that fix the specified generating object up to
isomorphism. The 2-morphisms are natural transformations such that the com-
ponent on the generating object is the identity of the generating object. It is
shown that there is at most one 2-morphism between any pair of 1-morphisms,
and further that it must be an isomorphism. Thus there is no loss of generality
in truncating to a 1-category. See [27, Definition 3.4] for details. We specialise
their result as Proposition 3.0.1.

The (braided) fusion categories that we wish to compute the auto-equivalence
groups for satisfy the necessary conditions to apply the above equivalence of cate-
gories (admit pivotal structures and generated by a specified object). However the
restriction that the component of a natural transformation is the identity turns
out to be too strong. Thus planar algebra homomorphisms which are non-equal
can be mapped to isomorphic functors of the associated pivotal tensor categories.
To fix this we have to work out explicitly which planar algebra automorphisms
are mapped to isomorphic auto-equivalences.

The aim of this Chapter is to compute the Brauer-Picard groups of the ADE
fusion categories via braided auto-equivalences of their centres. The above The-
orem suggests that we should begin by studying the braided automorphisms of
the planar algebras associated to the centres. To remind the reader these are
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AN , Ad(A2N), Ad(D2N), Z(Ad(A2N+1)), and Z(Ad(E6)+). Note that some of
the centres appear as Deligne products of these categories e.g. Z(Ad(D2N)) ≃
Ad(D2N) ⊠Ad(D2N)bop. We deal with such products in Section 3.3.

Roughly speaking a planar algebra automorphism is a collection of vector
space automorphisms, one for each box space, that commute with the action of
planar tangles. More details on planar algebra automorphisms can be found in
[31]. As we have described the planar algebras we are interested in terms of
generators and relations it is enough to determine how the automorphisms act on
the generators, as any element of the planar algebra will be a sum of diagrams
of generators connected by planar tangle. This makes the AN case particularly
easy as this planar algebra has no generators.

Lemma 3.2.1. The planar algebras for AN have no non-trivial automorphisms.

Proof. Any diagram in the AN planar algebra is entirely planar tangle. As au-
tomorphisms of planar algebras have to commute with planar tangles, only the
identity automorphism can exist.

Unfortunately the other cases are not as easy.

Lemma 3.2.2. There are two braided planar algebra automorphisms of Ad(AN).
When lifted to the braided fusion category Ad(AN) the corresponding auto-
equivalences are naturally isomorphic.

Proof. Let φ be a planar algebra automorphism of Ad(AN). As the Ad(AN)
planar algebra has the single generator T ∈ P3 it is enough to consider how φ

behaves on T . As P3 is one dimensional it follows that φ(T ) = αT for some
α ∈ C. As φ must fix the single strand we can apply φ to relation (5) to show
that α ∈ {1,−1}. It can be verified that φ(T ) = −T is consistent with the other
relations and hence determines a valid planar algebra automorphism.

We now claim that the auto-equivalence of the Ad(AN) fusion category gener-
ated by this planar algebra automorphism is naturally isomorphic to the identity.
Let (n1, p1) and (n2, p2) be objects of the Ad(AN) fusion category, where ni ∈ N
and pi are projections in Pni . We define the components of our natural iso-
morphism to be τ(n,p) ∶= (−1)n. We need to verify that the following diagram
commutes for any morphism f ∶ (n1, p1) → (n2, p2) :

(n1, p1)
φ(f)
ÐÐÐ→ (n2, p2)

×××Ö
(−1)n1

×××Ö
(−1)n2

(n1, p1)
fÐÐÐ→ (n2, p2)
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Recall that f ∈ Pn1+n2 . First suppose that n1 +n2 is even, then the number of
T generators in f must be even, thus φ(f) = f . However in this case we also have
that (−1)n1 = (−1)n2 and so the above diagram commutes. If n1 +n2 is odd, then
the number of T generators in f must be odd, thus φ(f) = −f . However in this
case we also have that (−1)n1 = −(−1)n2 and so the above diagram commutes.

Lemma 3.2.3. There are four braided planar algebra automorphisms of Ad(D2N).
When lifted to the braided fusion category Ad(D2N) two of the auto-equivalences
are naturally isomorphic to the other two. Furthermore the non-trivial automor-
phism lifts to a non-gauge braided auto-equivalence of the category Ad(D2N).

Proof. Let φ be a planar algebra automorphism of Ad(D2N). Recall the planar
algebra Ad(D2N) has two generators T ∈ P3 and S ∈ P2N−2. As P3 is one dimen-
sional it follows that φ(T ) = αT for some α ∈ C. Applying relation (7) shows us
that α ∈ {1,−1}.

The vector space P2N−2 can be written TL2N−2 ⊕ CS, thus φ(S) = f + βS
where f ∈ TL2N−2 and β ∈ C. We can use relation (10) to show that φ(S) must
be uncappable, and hence f must be 0 as there are no non-trivial uncappable
Temperley-Lieb elements. Further relation (10) now shows that β ∈ {1,−1}. It
can be verified that any combination of choices of α and β gives a valid planar
algebra automorphism. This gives us four automorphisms.

However as monoidal auto-equivalences, the automorphisms which send T ↦
−T are naturally isomorphic to the corresponding automorphisms which leaves T
fixed. The proof of this is identical to the argument used in the previous proof.
Thus we get that as a fusion category Ad(D2N) has a single non-trivial auto-
equivalence. We can see that this non-trivial auto-equivalence is not a gauge
auto-equivalence as it exchanges the simple objects P and Q.

Lemma 3.2.4. There are two braided automorphisms of the Z(Ad(A2N+1)) pla-
nar algebra. The non-trivial automorphism lifts to a non-gauge braided auto-
equivalence of Z(Ad(A2N+1)).

Proof. Let φ be a braided planar algebra automorphism of Z(Ad(A2N+1)). As
a planar algebra Z(Ad(A2N+1)) has two generators Z ∈ P4 and S ∈ P2N . Except
in the special case when N = 2 the box space P4 is 4-dimensional, spanned by

{ , , Z , Z }. Thus we can write φ( Z ) as a linear combination

of these basis elements. As φ is a braided automorphism by definition it preserves

38



the braiding, that is

+ + q Z + q−1 Z = + + q φ( Z ) + q−1 φ( Z ) .

Solving this equation gives the unique solution φ( Z ) = Z .

For the N = 2 case we repeat the same proof but with P4 also having S as a
basis vector.

Now we have to determine where φ sends the generator S ∈ P2N . Recall that
relation (11) shows that any diagram with a single S is zero. We claim that
S is the only vector (up to scalar) in P2N with this property. Let v ∈ PN be
such a vector, as P2N ≅ TL2N ⊠ TL2N ⊕CS we can write v = f1 ⊠ f2 + αS where
f1 and f2 are elements of TL2N . As αS and v are uncappable, it follows that
f1⊠f2 must also be. In particular this implies that both f1 and f2 are uncappable
Temperley-Lieb diagrams, and so must be 0. Thus v = αS.

Relation (10) now implies that φ(S) = ±S as we know φ fixes Z and hence the
right hand side of the relation. It can be verified that S ↦ −S is consistent with
the other relations. The automorphism φ(S) = −S lifts to a non-gauge braided
auto-equivalence of the associated category as it exchanges the simple objects
f(N)+S

2 and f(N)−S
2 .

Lemma 3.2.5. There are two braided automorphisms of the Z(Ad(E+
6 )) pla-

nar algebra. The non-trivial automorphism lifts to a non-gauge braided auto-
equivalence of Z(Ad(E6

+)).

Proof. Almost identical to the proof of Lemma 3.2.4.

Braided auto-equivalences

The aim of this subsection is to leverage our knowledge of planar algebra au-
tomorphisms to compute the braided auto-equivalence group of the associated
braided category. As mentioned in the introduction, for our examples, planar
algebra automorphisms contain the gauge auto-equivalences of the associated
braided category. The results of the previous section show that there are in fact
no non-trivial gauge auto-equivalences for any of the categories we are interested
in! This means that the group of braided auto-equivalences is a subgroup of the
automorphism group of the fusion ring.

Our proofs to compute braided auto-equivalence group of C is as follows. First
we compute the fusion ring automorphisms of C. Then we analyse the t-values

39



of the simple objects of C to rule out fusion ring automorphisms that can’t lift to
braided auto-equivalences of C. Finally we construct braided auto-equivalences
of C to realise the remaining fusion ring automorphisms.

Lemma 3.2.6. We have Autbr(Ad(A2N)) = {e}.

Proof. The fusion ring of Ad(A2N) has no non-trivial automorphisms. Thus in
light of Theorem 3.0.1 and Lemma 3.2.2 there are no monoidal auto-equivalences
of the category Ad(A2N), and in particular no braided auto-equivalences.

Lemma 3.2.7. We have

Autbr(Ad(D2N)) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

Z/2Z when N ≠ 5

S3 when N = 5.

Proof. We break this proof up into three parts: N = 2, N = 5 and all other N .

Case N = 2:
The category Ad(D4) has fusion ring isomorphic to that of Vec(Z/3Z). It is

straightforward to see that the only possible fusion ring automorphism exchanges
the two non-trivial objects. Lemma 3.2.3 tells us two pieces of information. First
is that there are no gauge auto-equivalences of Ad(D4), and thus there are at
most two braided auto-equivalences of Ad(D4). Second is that there exists a
non-trivial braided auto-equivalence of Ad(D4), which realises the upper bound
on the braided auto-equivalence group.

Case N = 5: Studying the Ad(D10) fusion ring we see that there are 6 possible
automorphisms, corresponding to any permutation of the objects f (2), P , and Q.
From Lemma 3.2.3 we see that there are no non-trivial gauge auto-equivalences,
thus Autbr(Ad(D2N)) is a subgroup of S3.

To show that Autbr(Ad(D10)) = S3 we notice from Lemma 3.2.3 that Ad(D10)
has an order 2 braided auto-equivalence that exchanges the objects P and Q,
and from [41, Theorem 4.3] Ad(D10) has an order 3 braided auto-equivalence.
Therefore Lagrange’s Theorem implies that the order of Autbr(Ad(D10)) is at
least 6 and the result follows.

Case N > 2,N ≠ 5: For these cases, the only simple objects with the same
dimension are P andQ. Thus there can be at most two fusion ring automorphisms
of the Ad(D2N) fusion ring. The result now follows by the same argument as in
the N = 2 case.
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Lemma 3.2.8. We have

Autbr(AN) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

{e} N ≡ {1,2,4} (mod 4)

Z/2Z N ≡ 3 (mod 4).

Proof. When N is odd, the AN fusion ring has the non-trivial automorphism:

f (n) ↦
⎧⎪⎪⎪⎨⎪⎪⎪⎩

f (n) n is even

f (N−n−1) n is odd.

Case N ≡ {0,2} (mod 4): When N is even there are no non-trivial automor-
phisms of the AN fusion ring. Thus the result follows as there are no non-trivial
gauge auto-equivalences of the category AN .

Case N ≡ 1 (mod 4):
In this case there is a fusion ring automorphism exchanging the generating

object f (1) and f (N−2), however these two objects have different t-values so there
is no braided auto-equivalence realising the fusion ring automorphism. Thus the
result follows as there are no non-trivial gauge auto-equivalences of the category
AN .

Case N ≡ 3 (mod 4):
We first give a bound on the size of the auto-equivalence group of AN . On

the level of fusion rings there are two automorphisms, with the non-trivial one
exchanging f (1) and f (N−2). As there are no non-trivial gauge auto-equivalences
of the category AN , we have that Autbr(AN) ⊆ Z/2Z.

To show existence of the non-trivial braided auto-equivalence it suffices to
show that the category generated by f (N−2) is equivalent to AN as a braided
tensor category. It is known that the T -matrix is a complete invariant of braided
fusion categories with AN fusion rules [18]. The braided fusion category generated
by f (N−2) has the same T -matrix as AN , hence they are braided equivalent.

We can slightly modify the above argument to also compute the tensor auto-
equivalences of AN .

Lemma 3.2.9. We have

Aut⊗(AN) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

{e} N ≡ 0 (mod 2)

Z/2Z N ≡ 1 (mod 2).
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Proof. When N is even there are no non-trivial automorphisms of the AN fusion
ring. Thus as there are no automorphisms of the AN planar algebra, we have
Aut⊗(AN) = {e}.

When N is odd the same argument as we used in Lemma 3.2.8 shows that
Aut(AN) ⊆ Z/2Z. To realise the non-trivial tensor auto-equivalence we need to
show that the tensor category generated by f (N−2) is equivalent to AN . Recall that
the categorical dimension of the generating object of AN is a complete invariant
of these tensor categories [18]. The result then follows as f (1) and f (N−2) have
the same categorical dimension.

While the Ad(A2N+1) categories do not appear as factors of any of the centres
we are studying in this Chapter, we can show the existence of an exceptional
monoidal auto-equivalence of Ad(A7). This auto-equivalence will be useful when
trying later when trying to construct invertible bimodules over Ad(A7).

Lemma 3.2.10. We have Aut⊗(Ad(A7)) = Z/2Z.

Proof. From the previous subsection we know that there are no gauge auto-
equivalences of Ad(A7). A quick analysis of the fusion ring of Ad(A7) reveals a
single non-trivial automorphism, exchanging f (2) and f (4).

Consider the planar algebras

PA(Ad(A7); f (2)) and PA(Ad(A7); f (4)).

Both of these planar algebras contain sub-planar algebras generated by the triva-
lent vertex f (2) ⊗ f (2) → f (2) and f (4) ⊗ f (4) → f (4) respectively. By considering
the fusion rules for Ad(A7) we can see that both these sub-planar algebras have
box space dimensions (1,0,1,1,3, ....), thus by the main Theorem of [42] must be
SO(3)q for q either e

iπ
4 or e

3iπ
4 . As the categorical dimension of both f (2) and f (4)

in Ad(A7) is 1 +
√

2, we must have that both sub-planar algebras are SO(3)
e
iπ
4
.

By again considering fusion rules for Ad(A7) we can see that

PA(Ad(A7); f (4)) = SO(3)
e
iπ
4
= PA(Ad(A7); f (2)).

Thus there is a planar algebra isomorphism

PA(Ad(A7); f (2)) → PA(Ad(A7); f (4)),

which by Proposition 3.0.1 gives us a monoidal equivalence between based cate-
gories (Ad(A7), f (2)) and (Ad(A7), f (4)). Forgetting the basing realises the non-
trivial monoidal auto-equivalence of Ad(A7).
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Lemma 3.2.11. We have Autbr(Z(Ad(E+
6 ))) = Z/2Z.

Proof. Recall that Z(Ad(E6)) is a de-equivariantization of a sub-category of A11⊠
Abop

3 . Thus we can pick representatives of the simple objects of Z(Ad(E6)) as in
Table 3.1. We include the dimensions and twists of these simple objects (from
formulas in [15, 48]).

X dim(X) tX

f (0) ⊠ f (0) 1 1

f (2) ⊠ f (0) 1 +
√

3 e
2πi
6

f (4) ⊠ f (0) 2 +
√

3 −1

f (6) ⊠ f (0) 2 +
√

3 1

f (8) ⊠ f (0) 1 +
√

3 e
8πi
6

f (10) ⊠ f (0) 1 −1

f (1) ⊠ f (1) 1 +
√

3 −i
f (3) ⊠ f (1) 3 +

√
3 1

1
2(f (5) ⊠ f (1) + S) 1 +

√
3 e

5πi
6

1
2(f (5) ⊠ f (1) − S) 1 +

√
3 e

5πi
6

Table 3.1: Dimensions and t-values for the simple objects of Z(Ad(E+
6 ))

By considering dimensions and twists, we can see that there is only one pos-
sible non-trivial fusion ring automorphism of Z(Ad(E+

6 )), that exchanges the
objects 1

2(f (5) ⊠ f (1) + S) and 1
2(f (5) ⊠ f (1) − S). Thus, as there are no non-

trivial gauge auto-equivalences of the category Z(Ad(E+
6 )), we must have that

Autbr(Z(Ad(E+
6 ))) ⊆ Z/2Z. A non-trivial braided auto-equivalence of Z(Ad(E+

6 ))
is constructed in Lemma 3.2.5.

Remark 3.2.12. The dimensions and T matrix for the centre for Z(Ad(E+
6 )) have

also been computed in [30].

We end this section with the most difficult case, the centre of Ad(A2N+1).
Unfortunately we are unable to explicitly construct the braided auto-equivalences
for many cases. Instead we are forced to find invertible bimodules over Ad(A2N+1)
and appeal to the isomorphism from the invertible bimodules to the braided auto-
equivalences of the centre.
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Lemma 3.2.13. We have

Autbr(Z(Ad(A2N+1))) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Z/2Z when N ≡ 0 (mod 2) or N = 1

(Z/2Z)2 when N ≡ 1 (mod 2) and N ≠ {1,3}

D2⋅4 when N = 3.

Proof. As in the Z(Ad(E+
6 )) case we choose representatives for the simple objects

of Z(Ad(A2N+1)). These representatives are:

{f (n) ⊠ f (m) ∣ n < 2N −m and n −m ≡ 0 (mod 2)}⋃{f (2N−n) ⊠ f (n) ∣ 0 ≤ n < N}⋃{f
(N) ⊠ f (N) ± S

2
} .

Thus the dimensions of the simple objects are among the set

{[n + 1][m + 1] ∣ n < 2N −m and n −m ≡ 0 (mod 2)}⋃{[2N − n + 1][n + 1] ∣ 0 ≤ n < N}⋃{[N + 1]2

2
} .

When N ≠ {1,3} the automorphism group of the fusion ring is (Z/2Z)3, generated
by the three automorphisms

• f (n) ⊠ f (m) ↔ f (m) ⊠ f (n) for all n,m even,

• f (n) ⊠ f (m) ↔ f (2N−n) ⊠ f (m) for all n,m odd,

• f(N)⊠f(N)+S
2 ↔ f(N)⊠f(N)−S

2 .

When N = 1 the automorphism group of the fusion ring is S3, generated by
the two automorphisms

• f(N)⊠f(N)+S
2 ↔ f(N)⊠f(N)−S

2 ,

• f (2) ⊠ f (0) → f(N)⊠f(N)+S
2 → f(N)⊠f(N)−S

2 → f (2) ⊠ f (0).

When N = 3 the automorphism group of the fusion ring has order 16, and is
generated by the three automorphisms

• f(3)⊠f(3)+S
2 ↔ f(3)⊠f(3)−S

2 ,

• f (1) ⊠ f (1) → f(3)⊠f(3)+S
2 → f (5) ⊠ f (1) → f(3)⊠f(3)−S

2 → f (1) ⊠ f (1), f (2) ⊠ f (0) ↔
f (0) ⊠ f (4), and f (4) ⊠ f (0) ↔ f (0) ⊠ f (2),

• f (2) ⊠ f (0) ↔ f (0) ⊠ f (2), f (4) ⊠ f (0) ↔ f (0) ⊠ f (4).

44



It can be easily verified that the first two of these automorphisms satisfy the
relations of the usual s and r generators of D2⋅4.

From Lemma 3.2.4 we know there are no non-trivial braided Gauge auto-
equivalences of Z(Ad(A2N+1)). Thus these groups are upper bounds for Autbr(Z(Ad(A2N+1))).

Case N ≡ 0 (mod 2): When N ≡ 0 (mod 2) the t values for f (1) ⊠ f (1)

and f (2N−1) ⊠ f (1) are different, and the t values for f (2) ⊠ f (0) and f (0) ⊠ f (2)

are different. Thus the only possible braided auto-equivalence is f(N)⊠f(N)+S
2 ↔

f(N)⊠f(N)−S
2 , which is constructed in Lemma 3.2.4. Thus Autbr(Z(Ad(A2N+1))) =

Z/2Z.

Case N ≡ 1 (mod 2) and N ≠ {1,3}: When N ≡ 1 (mod 2) and N ≠ {1} the
t-values for f (2)⊠f (0) and f (0)⊠f (2) are different. Thus we have an upper bound
of (Z/2Z)2 on Autbr(Z(Ad(A2N+1))).

To complete the proof we need to construct four braided auto-equivalences.
Instead we show the existence of four invertible bimodules over Ad(A2N+1). There
is the trivial bimodule, of rank N + 1, which gives us one. The odd graded
piece of the Z/2Z-graded fusion category A2N+1 is an invertible bimodule. This
bimodule has rank N , and thus is not equivalent to the trivial bimodule. This
gives us two invertible bimodules over Ad(A2N+1), if we can show the existence
of a third invertible bimodule then the group must be (Z/2Z)2 via an application
of Lagrange’s theorem.

Consider the object A = 1 ⊕ f (2N) in Ad(A2N+1). This object has a unique
algebra structure in A2N+1 [45, 15], and furthermore the category of A bimodules
in A2N+1 is equivalent to A2N+1 [47]. Therefore we can apply Lemma 2.0.1 to see
that A − bimodAd(A2N+1) ≃ Ad(A2N+1). Thus A−mod is an invertible bimodule
over Ad(A2N+1). The rank of A−mod is N+1

2 , and so is non-equivalent to either
of the two previous invertible bimodules.

Case N = 1:
The representatives of the four simple objects of Z(Ad(A3)) are f (0) ⊠ f (0),

f(1)⊠f(1)−S
2 , f(1)⊠f(1)+S

2 , and f (2) ⊠ f (0). The t-values of these objects are 1, 1, 1,
and −1 respectively. We can see that the only possibility for a non-trivial braided
auto-equivalence is f(1)⊠f(1)+S

2 ↔ f(1)⊠f(1)−S
2 . This braided auto-equivalence is con-

structed in Lemma 3.2.4.

Case N = 3: The t-values for f (2) ⊠ f (0) ↔ f (0) ⊠ f (2) are different in
Z(Ad(A7)), thus we have that Autbr(Z(Ad(A7))) ⊆D2⋅4.

As in the N ≡ 1 (mod 2) case we unfortunately have to explicitly construct 8

invertible bimodules over Ad(A7). Using the same arguments as before we have
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the algebra objects 1, 1⊕f (2), and 1⊕f (6) which give rise to invertible bimodules.
Each of these bimodules is distinct as the ranks are 4, 3, and 2 respectively. We
can twist each of these bimodules by the non-trivial outer auto-equivalence of
Ad(A7) from Lemma 3.2.10 to find 6 distinct invertible bimodules over Ad(A7).
As 6 doesn’t divide the order of D2⋅4 it follows from Lagrange’s theorem that
Autbr(Z(Ad(A7))) =D2⋅4.

We also need to calculate the braided auto-equivalences of the opposite braided
category for many of the examples above. However there is a canonical isomor-
phism Autbr(C) ≅ Autbr(Cbop) so we really don’t need to worry.

3.3 The Brauer-Picard groups of the ADE fusion
categories

We spend this Section tying up the loose ends to complete our computations
of the Brauer-Picard groups of the ADE fusion categories. Our only remaining
problem is to compute the braided auto-equivalence group of the centres that are
products of two modular categories.

Consider a product of braided tensor categories C ⊠D. Given a braided auto-
equivalence of C and a braided auto-equivalence of D one gets a braided auto-
equivalence of C ⊠D by acting independently on each factor. This determines an
injection Autbr(C)×Autbr(D) → Autbr(C ⊠D). This injection is an isomorphism
if and only if every braided auto-equivalence of C ⊠D restricts to braided auto-
equivalences of the factors.

For all of the centres we are interested in it turns out that every braided auto-
equivalence of the product restricts to auto-equivalences of the factors. Thus
the results of Section 3.2 are sufficient to compute the Brauer-Picard group. We
consider the dimensions and t-values of the generating objects of the factors (in
our examples the factors are always singly generated). These values are invariant
under action by a braided auto-equivalence. Thus if the only other objects in
the product with the same dimension and t-value as the generating object also
lie in the same factor then the generating object of that factor must be mapped
within the factor by any braided auto-equivalence. As the generating object of
the factor is mapped within the same factor it follows that the rest of the factor
must be mapped within the same factor and thus the braided auto-equivalence
restricts to that factor.
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Lemma 3.3.1. We have Autbr(Z(Ad(E+
8 ))) = Autbr(Ad(D16))×Autbr(Ad(A4)bop).

Proof. Recall from Section 3.1 that the Drinfeld centre of Ad(E+
8 ) is Ad(D+

16) ⊠
Ad(A4)bop.

Let’s first look at f (2)⊠f (0), the generating object of the Ad(D+
16) factor. This

object has unique dimension in Ad(D+
16)⊠Ad(A4)bop, and thus we must have that

f (2) ⊠ f (0) is sent to itself by any auto-equivalence of Ad(D+
16) ⊠Ad(A4)bop. As

f (2) ⊠ f (0) tensor generates the Ad(D+
16) factor, we see that any auto-equivalence

of Ad(D+
16) ⊠Ad(A4)bop restricts to this factor.

Now we look at the generating object of the Ad(A4)bop factor, that is f (0) ⊠
f (2). Again by considering dimensions we see that the object f (0) ⊠ f (2) must
be sent to itself by any auto-equivalence. Hence any auto-equivalence of D+

16 ⊠
Ad(A4)bop restricts to the Ad(A4)bop factor.

The rest of the Drinfeld centres described in Section 3.1 which are products
have braided auto-equivalence groups which decompose in a similar fashion.

Lemma 3.3.2. We have the following:

Autbr(Z(Ad(A2N))) = Autbr(Ad(A2N)) ×Autbr(Ad(A2N)bop)
Autbr(Z(Ad(D2N))) = Autbr(Ad(D2N)) ×Autbr(Ad(D2N)bop).

Proof. In both cases, the pair of the dimension and twist of the generating objects
of each factor, f (2) ⊠ f (0) and f (0) ⊠ f (2), are unique. Thus every braided auto-
equivalence of the centres restricts to braided auto-equivalences of the factors.

Putting everything together we can now complete the proof of the main The-
orem of this Chapter.

Proof of Theorem 3.0.1. The results of Section 3.2 and 3.3 compute the braided
auto-equivalence groups of the centres of the unitary fusion categories Ad(AN),
Ad(D2N), Ad(E+

6 ), and Ad(E+
8 ). The isomorphism Autbr(Z(C)) ≅ BrPic(C)

gives us the Brauer-Picard groups of these categories. Finally as Ad(E−
6 ) is

Galois conjugate to Ad(E+
6 ), and Ad(E−

8 ) is Galois conjugate to Ad(E+
8 ) we

can apply [13, Lemma 2.10] to give us the Brauer-Picard groups of Ad(E−
6 ) and

Ad(E−
8 ).
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3.4 Explicit constructions of invertible bimodules
from braided autoequivalences

To compute the extension theory of a fusion category one ideally wants to have
explicit descriptions of the invertible bimodules. So far our analysis has just
revealed the group structure of the Brauer-Picard groups. In most cases this is
sufficient to completely understand the invertible bimodules over the category
e.g. The Brauer-Picard group of Ad(E6) is Z/2Z which corresponds to the two
graded pieces of E6. Exceptions to this are the Ad(D10) category, which has
Brauer-Picard group S3 ×S3, and the Ad(A7) category, which has Brauer-Picard
group D2⋅4. The aim of this Section is to give explicit descriptions of all the
invertible bimodules over these categories. We achieve this by chasing through
the isomorphism BrPic(C) ≅ Autbr(Z(C)).

An invertible bimodule over C corresponds to a left C-module M along with
an equivalence C ∼Ð→ Fun(M,M)C [17]. This description gives rise to a natural
action of Aut(C) on BrPic(C) by precomposing a tensor auto-equivalence of C
to get another equivalence C ∼Ð→ C

∼Ð→ Fun(M,M)C . If we restrict this action to
outer auto-equivalences of C then this action is free and faithful. Therefore up to
the action of Out⊗(C), invertible bimodules over C correspond to left C-module
categories such that C ≅ Fun(M,M)C . In the language of algebra objects this
corresponds to finding all simple algebra objects A ∈ C such that A-bimod ≅ C.
The isomorphism BrPic(C) ≅ Autbr(Z(C)) allows us to compute the underlying
algebra object A corresponding to an invertible bimodule we get from a braided
auto-equivalence of Z(C).

Construction 3.4.1. [17]

Let F ∈ AutbrZ(C). We will construct an algebra A ∈ C such that A −modC

is equivalent to the image of F under the isomorphism 3.0.1 (as left C-module
categores). The object 1 is trivially an algebra object in C, therefore inducing
1 up to the centre of C gives an algebra object of the centre, as the induction
functor is lax monoidal. As F is a tensor auto-equivalence F −1(I(1)) also has
the structure of an algebra. Finally restricting back down to C gives us an
algebra object back in C. However R(F −1(I(1))) may not be indecomposable
as an algebra object. Let A be any simple algebra object in the decomposition
of R(F −1(I(1))), then independent of choice of A the corresponding module
category is always the same. Thus we can choose any such A.
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Invertible bimodules over Ad(D10)

The issue with directly applying the above construction to get such an A is that it
can be difficult to determine how R(F −1(I(1))) decomposes into simple algebra
objects. To deal with this problem we use the algorithm described in [24, Chapter
3] to obtain a finite list of possible simple algebra objects in Ad(D10). Note that
the algorithm does not guarantee all of the objects returned can be realised as
algebra objects. We include the rank of the corresponding module category as
this information will be a useful later.

Proposition 3.4.1. Let A be an algebra object of Ad(D10). Then A is one of:

Rank 3 Rank 4 Rank 6

1⊕ f (6) 1⊕ f (2) 1

1⊕ f (2) ⊕ f (6) ⊕ P ⊕Q 1⊕ P 1⊕ f (4) ⊕ P
1⊕ 2f (2) ⊕ 3f (4) ⊕ 4f (6) ⊕ 2P ⊕ 2Q 1⊕Q 1⊕ f (4) ⊕Q

1⊕ f (2) ⊕ f (4) ⊕ f (6) 1⊕ f (2) ⊕ f (4)

1⊕ f (4) ⊕ f (6) ⊕ P 1⊕ f (2) ⊕ f (4) ⊕ f (6) ⊕ P ⊕Q
1⊕ f (4) ⊕ f (6) ⊕Q 1⊕ f (2) ⊕ 2f (4) ⊕ 2f (6) ⊕ P ⊕Q

1⊕ f (2) ⊕ f (4) ⊕ 2f (6) ⊕ P ⊕Q
1⊕ 2f (2) ⊕ 2f (4) ⊕ 2f (6) ⊕ P ⊕Q
1⊕ f (2) ⊕ 2f (4) ⊕ 2f (6) ⊕ 2P ⊕Q
1⊕ f (2) ⊕ 2f (4) ⊕ 2f (6) ⊕ P ⊕ 2Q

Proof. This list was computed using the algorithm from [24, Chapter 3]. Our
implementation was tested against the results of [24].

With this list of possible simple algebra objects we wish to determine how
R(F −1(I(1))) decomposes into simple algebra objects.

Recall from Lemmas 3.2.7 and 3.3.2 that the group of braided auto-equivalences
of Z(Ad(D10)) = Ad(D10) ⊠Ad(D10)bop is S3 ×S3 where each S3 factor indepen-
dently permutes the objects f (2), P and Q in Ad(D10) and Ad(D10)bop respec-
tively.

In general describing the induction and restriction functors between the cate-
gories C and Z(C) is a difficult problem. However as Ad(D10) is modular these
functors behave quite nicely. The induction of the tensor identity 1 up to the cen-
tre Ad(D10)⊠Ad(D10)bop gives the object ⊕X∈Irr(Ad(D10))X⊠Xbop where we write
Xbop to specify the objectX in the opposite category. The restriction of an object
X ⊠ Y bop in Ad(D10) ⊠ Ad(D10)bop back down to Ad(D10) is given by X ⊗ Y ∗.
We compute the following table of R(F −1(I(1))) for each F ∈ Autbr(Z(D10)).
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Autbr(Ad(D10))
× id P ↔ Q f (2) ↔ P f (2) ↔ Q f (2) → P → Q f (2) → Q→ P

id I Bf(2) BQ BP A A

P ↔ Q Bf(2) I A A BP BQ

f (2) ↔ P BQ A I A Bf(2) BP

A
u

tb
r (

A
d
(D

bo
p

1
0

))

f (2) ↔ Q BP A A I BQ Bf(2)

f (2) → P → Q A BP Bf(2) BQ I A

f (2) → Q→ P A BQ BP Bf(2) A I

Where

I ∶= 61⊕ 3f (2) ⊕ 6f (4) ⊕ 3f (6) ⊕ 3P ⊕ 3Q

A ∶= 31⊕ 3f (2) ⊕ 3f (4) ⊕ 6f (6) ⊕ 3P ⊕ 3Q

Bf(2) ∶= 41⊕ 5f (2) ⊕ 4f (4) ⊕ 5f (6) ⊕ 2P ⊕ 2Q

BP ∶= 41⊕ 2f (2) ⊕ 4f (4) ⊕ 5f (6) ⊕ 5P ⊕ 2Q

BQ ∶= 41⊕ 2f (2) ⊕ 4f (4) ⊕ 5f (6) ⊕ 2P ⊕ 5Q.

Lemma 3.4.2. There exist unique decompositions of I, Bf(2) ,BP , and BQ into
simple algebra objects. These decompositions are

I =(1) ⊕ (1⊕ f (4) ⊕ P ) ⊕ (1⊕ f (4) ⊕Q) ⊕ (1⊕ f (2) ⊕ f (4)) ⊕ (1⊕ f (2) ⊕ f (4) ⊕ f (6) ⊕ P ⊕Q)
⊕ (1⊕ f (2) ⊕ 2f (4) ⊕ 2f (6) ⊕ P ⊕Q),

Bf(2) =(1⊕ f (2)) ⊕ (1⊕ f (2) ⊕ f (4) ⊕ f (6)) ⊕ (1⊕ f (2) ⊕ f (4) ⊕ 2f (6) ⊕ P ⊕Q)
⊕ (1⊕ 2f (2) ⊕ 2f (4) ⊕ 2f (6) ⊕ P ⊕Q),

BP =(1⊕ P ) ⊕ (1⊕ f (4) ⊕ f (6) ⊕ P ) ⊕ (1⊕ f (2) ⊕ f (4) ⊕ 2f (6) ⊕ P ⊕Q)
⊕ (1⊕ f (2) ⊕ 2f (4) ⊕ 2f (6) ⊕ 2P ⊕Q),

BQ =(1⊕Q) ⊕ (1⊕ f (4) ⊕ f (6) ⊕Q) ⊕ (1⊕ f (2) ⊕ f (4) ⊕ 2f (6) ⊕ P ⊕Q)
⊕ (1⊕ f (2) ⊕ 2f (4) ⊕ 2f (6) ⊕ P ⊕ 2Q).

Proof. We brute force check all possible combinations of simple algebra objects
in Lemma 3.4.1 and see that only the above decompositions are possible. To sim-
plify our computations recall that all simple algebra objects in the decomposition
of R(F −1(I(1))) will have equivalent module categories. As module categories
with different ranks are clearly non-equivalent we can restrict our attention to
combinations of algebra objects whose corresponding module categories have the
same rank.

Lemma 3.4.3. The objects 1⊕f (2), 1⊕P , and 1⊕Q have unique algebra object
structures.
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Proof. Existence of an algebra object structure follows from Lemma 3.4.2. As
Hom(f (2)⊗f (2), f (2)), Hom(P ⊗P,P ), and Hom(Q⊗Q,Q) are all 1-dimensional
we can apply [45, Lemma 8] to get uniqueness.

Lemma 3.4.4. The algebra object A decomposes in to simple algebra objects as
(1⊕ f (6)) ⊕ (1⊕ f (2) ⊕ f (6) ⊕ P ⊕Q) ⊕ (1⊕ 2f (2) ⊕ 3f (4) ⊕ 4f (6) ⊕ 2P ⊕ 2Q).

Proof. Using the same technique as in Lemma 3.4.2 we can show that A either
decomposes as

(1⊕ f (6)) ⊕ (1⊕ f (2) ⊕ f (6) ⊕ P ⊕Q) ⊕ (1⊕ 2f (2) ⊕ 3f (4) ⊕ 4f (6) ⊕ 2P ⊕ 2Q),

or
3 × (1⊕ f (2) ⊕ f (4) ⊕ 2f (6) ⊕ P ⊕Q).

We will rule out the possibility of the latter decomposition.
Suppose such a decomposition did exist, then this would imply that the cor-

responding bimodule category would have underlying algebra object 1 ⊕ f (2) ⊕
f (4)⊕2f (6)⊕P ⊕Q, and hence is equivalent to 1⊕f (2)⊕f (4)⊕2f (6)⊕P ⊕Q-mod
as a left module category. The category 1⊕ f (2) ⊕ f (4) ⊕ 2f (6) ⊕ P ⊕Q-mod has
module fusion graph:

The dimension of object at the far right we compute to be
√

[3] + 1. Thus
the internal hom of this object is an algebra object in Ad(D10) with dimension
[3]+1, and so must be one of 1⊕f (2), 1⊕P , or 1⊕Q. This implies 1⊕f (2)⊕f (4)⊕
2f (6)⊕P ⊕Q-mod is equivalent to one of 1⊕f (2)-mod, 1⊕P -mod, or 1⊕Q-mod.

Assume without loss of generality that 1⊕ f (2) ⊕ f (4) ⊕ 2f (6) ⊕ P ⊕Q-mod is
equivalent to 1 ⊕ f (2)-mod, as the following argument works with f (2) replaced
with P or Q. Lemma 3.4.3 shows us that there exists a unique algebra object
structure on 1 ⊕ f (2), and thus up to action of tensor auto-equivalences there is
a unique invertible bimodule with underlying algebra object 1 ⊕ f (2). However
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Lemma 3.4.2 tells us that the underlying algebra object of any of the invertible
bimodules corresponding to Bf(2) must be 1 ⊕ f (2). As Bf(2) appears 6 times in
Table 3.4 it follows that the algebra object structure on 1⊕ f (2) coming from A

is different than the one coming from Bf(2) . Thus there are two algebra object
structures on 1 ⊕ f (2), but this is a contradiction to Lemma 3.4.3. Therefore A
cannot decompose as 3 × (1⊕ f (2) ⊕ f (4) ⊕ 2f (6) ⊕ P ⊕Q).

Corollary 3.4.2. There exists two algebra object structures on 1⊕f (6) such that
(1⊕ f (6)) − bimod ≃ Ad(D10).

Proof. The above table and Lemma 3.4.4 shows that there are exactly 12 invert-
ible bimodule categories over Ad(D10) whose underlying algebra object is 1⊕f (6).
As Out⊗(Ad(D10)) = S3 has order 6 (Lemma 3.2.7), up to the action of outer
tensor auto-equivalences there are two different left Ad(D10) modules with dual
equivalent to Ad(D10), and hence two algebra object structures on 1⊕ f (6) such
that (1⊕ f (6))-bimod ≃ Ad(D10).

The algebra objects 1 ⊕ f (6) correspond to subfactors. These are the GHJ
subfactors corresponding to the odd part of E7 as a module over D10.

Corollary 3.4.3. There exist two inequivalent subfactors of index 1+cos(π9 ) csc( π18) ≊
6.411 whose even and dual even parts are Ad(D10), and with principle graph

Summarising the above discussion, we have:

Theorem 3.4.5. Up to action of outer tensor auto-equivalences there are six
invertible bimodules over Ad(D10). These invertible bimodules come from the
algebra objects 1, 1⊕ f (2), 1⊕P , and 1⊕Q each of which have a unique algebra
object structure, and 1⊕ f (6) which has two algebra object structures.

Bimodules over Ad(A7)

Recall that the group of braided auto-equivalences of Z(Ad(A7)) is D2⋅4 with
generators r and s as described in Lemma 3.2.13. The same calculations as
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for D10 reveal the group structure on the invertible bimodules of Ad(A7). The
induction matrix

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 1 0 0 0 1 0 0 1 0 0

0 1 0 0 1 1 0 1 1 1 1 0 1 0

0 0 1 0 0 1 1 0 1 1 1 1 0 1

0 0 0 1 0 0 1 0 0 1 0 0 1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

for this computation was computed from the induction matrix for the modular
category A7. The ordering of the rows is the standard ordering of the simples
objects of Ad(A7). The ordering of the columns is as follows:

1 ⊠ 1, f (2) ⊠ 1,f (4) ⊠ 1, f (6) ⊠ 1, f (1) ⊠ f (1), f (3) ⊠ f (1), f (5) ⊠ f (1),1 ⊠ f (2), f (2) ⊠ f (2),

f (4) ⊠ f (2), f (1) ⊠ f (3),
f (3) ⊠ f (3) + S

2
,
f (3) ⊠ f (3) − S

2
,1 ⊠ f (4).

With this data we compute the group structure as follows:

Autbr(Z(Ad(A7))) e r r2 r3 s rs r2s r3s

A 1 1⊕ f (2) 1⊕ f (6) 1⊕ f (4) 1⊕ f (2) 1 1⊕ f (4) 1⊕ f (6)
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Chapter 4

Classifying cyclic extensions of the
adjoint subcategories of the ADE
fusion categories generated by an
object of dimension less than 2

With the computations of Chapter 3 we are now placed to attempt the classi-
fication of unitary fusion categories generated by a normal object of dimension
less than 2. Unfortunately we are unable to provide a complete classification, as
there is a gap when the dimension is

√
2 +

√
2. The obstruction to classifying at

this dimension is the possible existence of an interesting new rank 12 extension of
Ad(A7). We are unable to construct, or show non-existence, for such a category,
though we have some evidence that the category should exist. Supposing the
category did exist, then we are able to work out what the fusion rules would be.
At the end of the Chapter we present the fusion graph for the generating normal
object of dimension

√
2 +

√
2.

4.1 Fusion categories generated by an object of
dimension 1

We begin this Chapter by reproving a well known classification, the classification
of unitary fusion categories generated by an object of dimension 1. While this
classification is certainly well known, we give our version of the proof, as it is a
nice warm up for the more difficult classification problems we will deal with in

55



this Chapter. This result is also interesting to us because the categories appearing
in this classification will appear in various contexts throughout the classification
results of the rest of this Chapter.

Theorem 4.1.1. Let C be a unitary fusion category generated by an object X
with dimension 1. Then

C ≃ Vecω(Z/MZ),

where ω ∈H3(Z/MZ,C×).

Proof. Let C be such a category, then as X tensor generates and has dimension 1,
every simple object in C must also have dimension 1. This implies Ad(C) ≃ Vec

and thus C is a G-graded extension of Vec. As C is generated by a single object,
we must have that G ≅ Z/MZ for some M ∈ N. Hence the proof of this Theorem
reduces to classifying cyclic extensions of Vec (all of which are unitary as Vec is
completely unitary).

As there are no non-trivial invertible objects in Vec, we have that

H2(Z/MZ, Inv(Vec)) = {e},

and it is well known that H3(Z/MZ,C×) ≅ Z/MZ. Thus there are at most M
possible Z/MZ-graded extensions of Vec. These are all realised by the categories
Vecω(Z/MZ) for ω ∈H3(Z/MZ,C×).

Note that the above Theorem does not give the classification of such categories
up to monoidal equivalence, but merely up to equivalence as extensions of Vec.

4.2 Realising bimodule categories, and additional
information

In this section we summarise the results of Chapter 3 needed to compute the cyclic
extension theory of the adjoint subcategories of the ADE fusion categories. We
give explicit descriptions of the invertible bimodules over the adjoint subcategories
of the ADE fusion categories, along with the order of each bimodule. This
information will be useful when we try to classify cyclic homomorphisms into the
Brauer-Picard groups.

LetM be an invertible bimodule over a Z/2Z-graded fusion category C. Then
M splits into two invertible bimodule categories over Ad(C). We call these two
Ad(C) bimdoules, M even and Modd. We can realise all the bimodules over the
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adjoint subcategories of the ADE fusion categories as even and odd parts of
bimodules over the full ADE fusion categories, along with twistings by auto-
equivalences as in Definition 2.0.9. Over the AN fusion categories we have the
trivial AN bimodule for all N , and the DN+3

2
bimodule when N ≡ 3 (mod 4)

(we also have the Deven modules when N ≡ 3 (mod 4), but these don’t have the
structure of invertible bimodules over AN). The auto-equivalences of Ad(AN)
are trivial, except for when N = 7, in which case there is a single non-trivial
auto-equivalence sending f (2) ↔ f (4). Over the D2N fusion categories we have
the trivial D2N bimodule for all N , and the E7, and E7 bimodules when N = 5

(both E7 and E7 have the same bimodule fusion rules). There is always an order
two auto-equivalence of Ad(D2N) that sends P ↔ Q, and when N = 5 there is
an order 3 auto-equivalence sending f (2) ↦ P ↦ Q ↦ f (2). Over both E6 and
E8 there is just the trivial bimodule, and no non-trivial auto-equivalences of the
adjoint subcategories. We summarise this information in Table 4.1. In particular
we see that every bimodule is unitary, and thus the adjoint subcategories of the
ADE fusion categories are completely unitary. Thus every graded extension of
these categories is again unitary.

We also present Table 4.2 showing the invertible objects in the centres of
each adjoint subcategory of an ADE fusion category. Here we use the notation
that these invertible objects are idempotents in the planar algebra corresponding
to the centre, described in Chapter 3. When an invertible bimodule acts non-
trivally on the group of invertible objects in the centre, then we also include this
information. This information will help us to determine the number of possible
cyclic extensions of each category.



C
B
im

odule
categories

over
C

O
rders

A
d
(A

N
)

N
=
3

A
even
3

and
A

odd
3

1
,2

N
=
7

A
even
7

,
A

odd
7

,D
even
5

,
D

odd
5

,f (
2)
↔
f (

4) A
even
7

,
f (

2)
↔
f (

4) A
odd
7

,f (
2)
↔
f (

4) D
even
5

,and
f (

2)
↔
f (

4) D
odd
5

1
,2
,2,2

,2,4,4
,2

N
≡
0
(m

o
d
2
)

A
even
N

1

N
≡
1
(m

o
d
4
)

A
even
N

and
A

odd
N

1
,2

N
≡
3
(m

o
d
4
)
and

N
≠
{3,7
}

A
even
N

,
A

odd
N

,
D

even
N
+
1

2
+

1 ,and
D

odd
N
+
1

2
+

1
1
,2
,2,2

A
d
(D

2
N
)

N
≠
5

D
even
2
N

,
D

odd
2
N
,P
↔
Q
D

even
2
N

,and
P
↔
Q
D

odd
2
N

1
,2
,2,2

N
=
5

D
even
1
0

,
D

odd
1
0
,
E

even
7

,
E

7 even,
E

odd
7

,
E

7 odd,
1
,2
,2,2

,3,3

P
↔
Q
D

odd
1
0
,
P
↔
Q
D

even
1
0

,
P
↔
Q
E

odd
7

,
P
↔
Q
E

7 odd,
P
↔
Q
E

7 even,
P
↔
Q
E

even
7

,
2
,2
,2,2

,6,6

f (
2)
↔
P
E

even
7

,f (
2)
↔
P
E

odd
7

,
f (

2)
↔
P
D

even
1
0

,
f (

2)
↔
P
E

7 odd,
f (

2)
↔
P
D

odd
1
0
,f (

2)
↔
P
E

7 even,
2
,2
,2,2

,6,6

f (
2)
↔
Q
E

7 even,
f (

2)
↔
Q
E

odd
7

,f (
2)
↔
Q
E

7 odd,
f (

2)
↔
Q
D

even
1
0

,
f (

2)
↔
Q
E

even
7

,f (
2)
↔
Q
D

odd
1
0
,

2
,2
,2,2

,6,6

f (
2)
↦
P
↦
Q
E

odd
7

,
f (

2)
↦
P
↦
Q
E

7 even,f (
2)
↦
P
↦
Q
D

odd
1
0
,f (

2)
↦
P
↦
Q
E

even
7

,
f (

2)
↦
P
↦
Q
D

even
1
0

,f (
2)
↦
P
↦
Q
E

7 odd,
3
,6
,6,6

,3,3

f (
2)
↦
Q
↦
P
E

7 odd,
f (

2)
↦
Q
↦
P
E

even
7

,
f (

2)
↦
Q
↦
P
E

7 even,f (
2)
↦
Q
↦
P
D

odd
1
0
,
f (

2)
↦
Q
↦
P
E

odd
7

,
f (

2)
↦
Q
↦
P
D

even
1
0

3
,6
,6,6

,3,3

A
d
(E

±6
)

E
even
6

and
E

odd
6

1
,2

A
d
(E

±8
)

E
even
8

and
E

odd
8

1
,2

Table
4.1:

B
im

odules
over

the
adjoint

subcategories
ofthe

A
D
E

fusion
categories

58



C
In
v
(
Z
(
C
)
)

A
ct
io
n
of

bi
m
od

ul
es

(w
he

n
no

n-
tr
iv
ia
l)

A
d
(
A
N
)

N
=
3

{
1
⊠
1
,
f
(1
) ⊠
+
S

2
,
f
(1
) ⊠
−
S

2
,f

(
2
)
⊠
1
}
≅
Z/

2
Z
×
Z/

2
Z

A
od

d
3

ex
ch
an

ge
s
th
e
ob

je
ct
s
f
(1
) ⊠
+
S

2
an

d
f
(1
) ⊠
−
S

2

N
≡
0
(
m
o
d
2)

{
1
⊠
1
}

N
≡
1
(
m
o
d
2)

{
1
⊠
1
,f

(
N
−

1
)
⊠
1
}

A
d
(
D

2
N
)

N
=
2

{
1
⊠
1
,1
⊠
P
,

D
od

d
4

ap
pl
ie
s
P
↔

Q
to

th
e
se
co
nd

fa
ct
or

P
⊠
1
,P

⊠
P
,Q

⊠
Q
,

P
↔
Q
D

od
d

4
ap

pl
ie
s
P
↔

Q
to

th
e
fir
st

fa
ct
or

1
⊠
Q
,Q

⊠
1
,Q

⊠
P
,Q

⊠
Q
}
≅
Z/

3
Z
×
Z/

3
Z

P
↔
Q
D

ev
en

4
ap

pl
ie
s
P
↔

Q
to

bo
th

fa
ct
or
s

N
>
2

{
1
⊠
1
}

A
d
(
E
± 6
)

{
1
⊠
1
,f

(
1
0
)
⊠
1
}

A
d
(
E
± 8
)

{
1
⊠
1
}

Ta
bl
e
4.
2:

In
ve
rt
ib
le

ob
je
ct
s
in

th
e
ce
nt
re
,a

nd
ac
ti
on

by
in
te
re
st
in
g
bi
m
od

ul
es

59



Recall we only care about extensions generated by an object of dimension
less than 2. We compute the dimensions of the objects in each of our bimodule
categories, as this will allow us to rule out many extensions that can not be gen-
erated by such an object, and thus disqualify certain cyclic homomorphisms into
the Brauer-Picard group. As twisting a bimodule by a monoidal auto-equivalence
of the underlying category doesn’t change the dimensions of the objects, we only
include the dimensions of the untwisted bimodules.

Dimensions in the A series

Let q = e πi
N+1 , then the dimensions of the simple objects in the invertible bimodules

(when they exist) over Ad(AN) are:

Bimodule Dimensions of simples

Aeven
N {[2n − 1]q ∶ 1 < n < ⌈N2 ⌉}
Aodd
N {[2n]q ∶ 1 < n < ⌊N2 ⌋}

Deven
N+1
2

+1
{
√

2[2n − 1]q ∶ 1 < n ≤ N+1
4 }

Dodd
N+1
2

+1
{
√

2[2n]q ∶ 1 < n < N+1
4 }⋃{

√
2[N+1

2 ]q}.

Dimensions in the D series

Let q = e πi
4N−2 , then the dimensions of the simple objects in the invertible bimodules

over Ad(D2N) (when they exist) are:

Bimodule Dimensions of simples

Deven
2N {[2n − 1]q ∶ 1 < n < N}⋃{ [2N−1]q

2 }
Dodd

2N {[2n]q ∶ 1 < n < N}
Eeven

7 cos ( π
18
) {2,Root [#13 − 12#1 − 8&,3] ,

Root [#13 − 6#12 + 8&,3] ,Root [#13 − 6#12 + 24&,3]}
≈ {1.96962,3.70167,4.98724,5.67128}

Eodd
7 cos ( π

18
) {Root [#16 − 60#14 + 288#12 − 192&,6] ,Root [#16 − 24#14 + 144#12 − 192&,6] ,

2Root [#16 − 6#14 + 9#12 − 3&,5]}
≈ {2.53209,3.87939,7.29086}.

Dimensions in the E series

The dimensions of the simple objects in the invertible bimodules over Ad(E±
6 )

are:
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Bimodule Dimensions of simples

Eeven
6 {1,1 +

√
3}

Eodd
6 {2 cos ( π

12
)}.

Note the we have dropped the ± notation for the bimodules in this case.
The dimensions of the simple objects in the invertible bimodules over Ad(E±

8 )
are:

Bimodule Dimensions of simples

Eeven
8 {1, 1

4 (
√

5 +
√

6 (
√

5 + 5) + 3) , 1
8 (4

√
5 +

√
6 (

√
5 + 5) +

√
30 (

√
5 + 5) + 8) ,

1
2
(
√

5 + 1)}
≈ {1,1.61803,2.9563,4.78339}

Eodd
8 {1

2

√√
5 +

√
6 (

√
5 + 5) + 7,

1
8 (

√
5 +

√
6 (

√
5 + 5) − 1)

√√
5 +

√
6 (

√
5 + 5) + 7,

1
16

√√
5 +

√
6 (

√
5 + 5) + 7(−2

√
5 −

√
6 (

√
5 + 5) +

√
30 (

√
5 + 5) + 6) ,

1
4
(
√

5 + 1)
√√

5 +
√

6 (
√

5 + 5) + 7}
≈ {1.98904,2.40487,3.21834,3.89116}.

Again we have dropped the ± notation for the bimodules in this case.

4.3 Classification results

We are now in place to begin classifying unitary fusion categories generated by
a normal object of dimension less than 2. By Theorem 1.0.1 such categories
must be unitary cyclic extensions of the even part of an ADE fusion category.
As we have shown that the adjoint subcategories of the ADE fusion categories
are completely unitary, we have that any extension is monoidally equivalent to
a unitary extension. Thus in this section we compute cyclic extensions of the
adjoint subcategories of the ADE fusion categories, generated by an object of
dimension less than 2.

Our proofs all follow the same outline. First we begin by classifying cyclic
homomorphisms into the Brauer-Picard group of each category. Using the results
of the previous Section we rule out many of these homomorphisms, simply by
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the fact that the bimodule corresponding to the 1-graded piece doesn’t have an
object of the right dimension.

Next we use the classification theory of graded extensions to count an up-
per bound of possible extensions corresponding to each homomorphism. Re-
call that Z/MZ-graded extensions of C are classified by triples (c,W,A), with
c being the homomorphism Z/MZ → BrPic(C), W an element of a certain
H2(Z/MZ, Inv(Z(C)))-torsor, and A an element of a certain H3(Z/MZ,C×)-
torsor, such that certain obstructions vanish. Once we have fixed our homo-
morphism c, we can easily give an upper bound on the number of extensions
realising c. This upper bound is simply the product of the order of the groups
H2(Z/MZ, Inv(Z(C))) and H3(Z/MZ,C×). Computing the size of these groups
is a straightforward exercise in group cohomology, given the information provided
about Inv(Z(C)) and the action of bimodules in Table 4.2.

Finally we construct extensions to realise the upper bound. For the most
part constructing these extensions is straightforward, simply involving some con-
structions with known categories. However in the cases Ad(A3), Ad(D4), and
Ad(D10) we have to use more complicated methods.

Cyclic extensions of Ad(A2N)

By far the easiest cases are the categories Ad(A2N). This is due to the fact that
the Brauer-Picard group is trivial, and there are no non-trivial invertible objects
in the centre. Thus we begin our classifications with this case.

Lemma 4.3.1. Let C be a Z/MZ-graded extension of Ad(A2N). If C is generated
by an object of dimension less than 2, then

C ≃ Ad(A2N) ⊠Vecω(Z/MZ),

where ω ∈H3(Z/MZ,C×).

Proof. We begin by classifying group homomorphisms φ ∶ Z/MZ→ BrPic(Ad(A2N)).
As the Brauer-Picard group of Ad(AN) is trivial the only homomorphism Z/MZ→
BrPic(Ad(A2N)) is the map 1↦ Aeven

2N .
From Table 4.2 we know that Z(Ad(A2N)) has no invertible objects. There-

foreH2(Z/MZ, Inv(Z(Ad(A2N))))must be trivial for allM . The groupH3(Z/MZ,C×)
s just Z/MZ.

Thus there are at most M different Z/MZ graded extensions of Ad(A2N).
The categories Ad(A2N) ⊠ Vecω(Z/MZ) for ω ∈ H3(Z/MZ,C×) realise all M of
these extensions.
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Cyclic extensions of Ad(A2N+1), N ≠ {1,3}

To construct some of the extensions in this case we have to take cyclic crossed
products (as defined in Definition 2.0.5) of the Aodd categories. Recall in general
to construct a crossed product we need a monoidal functor G → Aut⊗(C). For
our specific case we need a monoidal functor Z/MZ → Aut⊗(Aodd) for even M .
As Aodd is a modular category with distinguished boson or fermion (depending on
the exact choice of N) we can apply [14, Theorem 3.3] to get an order two auto-
equivalence of Aodd. With the explicit description given in the cited Lemma, it is
straightforward to show this non-trivial auto-equivalence extends to a monoidal
functor Z/2Z → Aut⊗(Aodd). We then factor Z/MZ through Z/2Z to get the
desired monoidal functor.

Lemma 4.3.2. Let N ≠ {1,3} a natural number, and C a Z/MZ graded extension
of Ad(A2N+1). If C is generated by an object of dimension less than 2, then M

is even and

C ≃ ⟨(f (1),1)⟩ ⊂ A2N+1 ⊠Vecω(Z/MZ) or,

C ≃ ⟨(f (1),1)⟩ ⊂ A2N+1
ω⋊Z/MZ,

where ω ∈H3(Z/MZ,C×).

Proof. We begin by classifying group homomorphisms φ ∶ Z/MZ→ BrPic(Ad(A2N+1)).
Recall that the Brauer-Picard group of Ad(A2N+1) is either Z/2Z or (Z/2Z)2 de-
pending on whether N is even or odd.

Case: N even
Here the Brauer-Picard group is Z/2Z. As the only objects in the trivial

bimodule Aeven
2N+1 with dimension less than 2 are invertible, we can ignore homo-

morphisms which map 1↦ Aeven
2N+1, as such an object couldn’t generate the entire

extension. Thus we can assume M even and φ ∶ Z/MZ → BrPic(Ad(A2N+1)) is
the map defined by 1↦ A2N+1

odd.
Case: N odd
Here the Brauer-Picard group is (Z/2Z)2. Exactly as in the N even case we

can rule out homomorphisms defined by 1↦ Aeven
2N+1. The only time the bimodule

Dodd
N+2 contains an object of dimension less than 2 is when N = 3, which we

have excluded in this Lemma. Thus we can rule out homomorphisms defined by
1 ↦ Dodd

N+2. The bimodule Deven
N+2 contains a single object of dimension less than

2. However this object always has dimension
√

2, and could only generate the
entire extension when N = 1. Therefore we can rule out homomorphisms defined
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by 1↦Deven
N+2. Hence we can assume M even and φ ∶ Z/MZ→ BrPic(Ad(A2N+1))

is the map defined by 1↦ A2N+1
odd.

There are exactly two invertible elements in the centre of Ad(A2N+1). Thus
H2(Z/MZ, Inv(Z(Ad(A2N+1)))) = Z/2Z. As Z/MZ is cyclic we have thatH3(Z/MZ,C×) =
Z/MZ. Thus there are at most 2M different Z/MZ graded extensions of Ad(A2N+1).
The categories ⟨(f (1),1)⟩ ⊂ A2N+1

ω⋊Z/MZ and ⟨(f (1),1)⟩ ⊂ A2N+1 ⊠Vecω(Z/MZ)
for ω ∈H3(Z/MZ,C×) realise all of these extensions.

Cyclic extensions of Ad(D2N), N ≠ {2,5}

RecallD±
2N are the unitary fusion categories obtained from theD2N planar algebra

with q = e πi
4N−2 and rotational eigenvalue of the S generator equal to ±i.

Lemma 4.3.3. Let N ≠ {2,5}, and C a Z/MZ-graded extension of Ad(D2N). If
C is generated by an object of dimension less than 2, then M is even and

C ≃ ⟨(f (1),1)⟩ ⊂D±
2N ⊠Vecω(Z/MZ),

where ω ∈H3(Z/MZ,C×).

Proof. Recall that the Brauer-Picard group of Ad(D2N) is (Z/2Z)2.
Case: N = 3

When N = 3 the trivial bimodule Deven
6 , and the twisted trivial bimodule

tw(Deven
6 ) both contain non-trivial objects of dimension 1+

√
5

2 . However any cat-
egory generated by such an object couldn’t generate all of C. This leaves two
homomorphisms φ ∶ Z/MZ → BrPic(Ad(D6)) to consider, the map defined by
1 ↦ Dodd

6 and the map defined by 1 ↦ tw(Dodd
6 ). In particular we may conclude

that M is even.
Case: N ≠ {2,3,5}
For these cases the only bimodules over D2N with an object of dimension less

than 2 are Dodd
2N and tw(Dodd

2N ). This leaves two homomorphisms φ ∶ Z/MZ →
BrPic(Ad(D2N)) to consider, the map defined by 1↦Dodd

2N and the map defined
by 1↦ tw(Dodd

2N ). In particular we may conclude that M is even.
For either case we see thatM must be even, and there are two homomorphisms

φ ∶ Z/MZ→ BrPic(Ad(D2N)) to consider.
When N > 2 the centre of Ad(D2N) contains no non-trivial invertible objects,

and hence H2(Z/MZ, Inv(Z(Ad(D2N)))) = {e}. As Z/MZ is cyclic we have
that H3(Z/MZ,C×) = Z/MZ. Thus when M is even there are at most 2M
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possible Z/MZ graded extensions of Ad(D2N), and when M is odd there are
zero. We construct all of the 2M -graded extensions in the even case. These
are realised by the categories ⟨(f (1),1)⟩ ⊂ D+

2N ⊠ Vecωd(Z/MZ) and ⟨(f (1),1)⟩ ⊂
D−

2N ⊠Vecωd(Z/MZ) for ω ∈H3(Z/MZ,C×).

Cyclic extensions of Ad(E±
6 )

Recall E±
6 are the unitary fusion categories obtained from the E6 planar algebra

with choice of q = e± iπ12 .
As in the Aodd case, we need to take cyclic crossed products of the cate-

gories E±
6 to construct certain extensions of Ad(E±

6 ). Again we factor Z/MZ
through Z/2Z (as we will see in the upcoming proof that M must be even).
The monoidal functor Z/2Z→ Aut⊗(E±

6 ) is obtained through realising E±
6 as the

de-equivariantization (Ad(E±
6 ) ⊠A3)//Rep(Z/2Z).

Lemma 4.3.4. Let C a Z/MZ graded extension of Ad(E±
6 ). If C is generated

by a normal object of dimension less than 2, then M is even and

C ≃ ⟨(f (1),1)⟩ ⊂ E±
6 ⊠Vecω(Z/MZ) or,

C ≃ ⟨(f (1),1)⟩ ⊂ E±
6

ω⋊Z/MZ,

where ω ∈H3(Z/MZ,C×).

Proof. Recall the Brauer-Picard group of Ad(E±
6 ) is Z/2Z. The only objects in

the trivial bimodule Eeven
6 with dimension less than 2 are invertible, and hence

can’t generate the entire category. Thus we can assume that M is even and
φ ∶ Z/MZ→ BrPic(Ad(E±

6 )) is the map defined by 1↦ Eodd
6 .

There are exactly two invertible elements in the centre of Ad(E±
6 ). Thus

H2(Z/MZ,Z/2Z) = Z/2Z. As Z/MZ is cyclic we have that H3(Z/MZ,C×) =
Z/MZ. Thus when M is odd, there are no extensions satisfying the hypothesis,
and when M is even there are at most 2M . These 2M Z/MZ-graded extensions
are all realised by the categories (f (1),1)⟩ ⊂ E±

6 ⊠ Vecω(Z/MZ) and ⟨(f (1),1)⟩ ⊂
E±

6

ω⋊Z/MZ for ω ∈H3(Z/MZ,C×).

Cyclic extensions of Ad(E±
8 )

Recall E±
8 are the unitary fusion categories obtained from the E8 planar algebra

with choice of q = e± iπ30 .
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Lemma 4.3.5. Let C a Z/MZ-graded extension of Ad(E±
8 ). If C is generated

by an object of dimension less than 2, then M is even and

C ≃⟨(f (1),1)⟩ ⊂ E±
8 ⊠Vecω(Z/MZ),

where ω ∈H3(Z/MZ,C×).

Proof. Recall that the Brauer-Picard group of Ad(E±
8 ) is Z/2Z. The only object

in the trivial bimodule Eeven
8 with dimension less than 2 has dimension 1+

√
5

2 .
Therefore the category generated by this object would be a cyclic extension
of Ad(A4), and could not generate the whole category. Thus we can assume
M is even and φ ∶ Z/MZ → BrPic(Ad(E±

8 )) is the map defined by 1 ↦ Eodd
8 .

There are no non-trivial invertible elements in the centre of Ad(E±
8 ). Thus

H2(Z/MZ,{e}) = {e}. As Z/MZ is cyclic we have that H3(Z/MZ,C×) = Z/MZ.
Thus we have M possible Z/MZ graded extensions of Ad(E±

8 ). These are all re-
alised by the categories ⟨(f (1),1)⟩ ⊂ E±

8 ⊠Vec
ω(Z/MZ) for ω ∈H3(Z/MZ,C×).

Cyclic extensions of Ad(A3)

As in our previous arguments for Ad(Aodd), we can restrict our attention to
even M , and the homomorphism φ ∶ Z/MZ → BrPic(Ad(A3)) determined by
1↦ Aodd

3 . Recall that Z(Ad(A3)) forms a Z/2Z×Z/2Z group, with the action of
Aodd

3 given by exchanging the objects f1±S
2 . We compute the cohomology group

H2(Z/MZ,Z/2Z × Z/2Z) to be Z/2Z when 4 divides M , and trivial otherwise.
The non-trivial 2−cocycle has representative

T (n,m) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1 ⊠ 1 if n +m <M

f (2) ⊠ 1 if n +m ≥M,

constructed from the recipe described in [1]. The existence of this non-trivial
cocycle makes the cyclic extensions of Ad(A3) more interesting than the previous
examples.

The categories ⟨(f (1),1)⟩ ⊂ A3 ⊠ Vecω(Z/MZ) for ω ∈ H3(Z/MZ,C×) realise
M different Z/MZ-graded extensions of Ad(A3). When 4 does not divide M a
counting argument as in the previous cases shows that these M categories are all
the possible Z/MZ-graded extensions of Ad(A3).

When 4 does divide M , we can twist the tensor product of ⟨(f (1),1)⟩ ⊂ A3 ⊠
Vec(Z/MZ) by the 2-cocycle T to get a new tensor product, i.e. for Xn in the
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n-th graded component, and Ym in the m-th graded component, their twisted
multiplication is given by:

Xn ⊗T Ym ∶= T (n,m) ⊗Xn ⊗ Ym.

This gives us a new quasi-monoidal category (we haven’t yet shown the asso-
ciator for this category satisfies the pentagon equation). It is straightforward to
see that the simple objects of this category can be labelled by:

{0,1,⋯,M − 1} ⋃ {Xi ∶ 1 ≤ i ≤M/2},

with commutative fusion rules:

n⊗m = n +m (mod M)
n⊗Xi =Xn+i (mod M

2
)

Xi ⊗Xj = (i + j − 1 (mod
M

2
)) ⊕ (i + j − 1 (mod

M

2
) + M

2
).

As the cohomology group H4(Z/MZ,C×) is trivial, we have from [14, Lemma
4.5] that there exists some associator for this quasi-monoidal category. In fact as
H3(Z/MZ,C×) = Z/MZ, there are M associators for this quasi-monoidal cate-
gory, one for each ω ∈ H3(Z/MZ,C×). We call these M different Z/MZ-graded
extensions of Ad(A3) the Z/2Z-generalised Moore-Read categories of type (M,ω),
or GMRZ/2Z(M,ω) for short. When M = 4, these categories are the fermionic
Moore-Read fusion categories [37], hence the naming convention. We also note
that these categories are example of generalized Tambara-Yamagami categories
of [37].

Another counting argument shows that when 4 divides M , the only pos-
sible Z/MZ-graded extensions of Ad(A3) are the categories ⟨(f (1),1)⟩ ⊂ A3 ⊠
Vecω(Z/MZ) and GMRZ/2Z(M,ω) for ω ∈ H3(Z/MZ,C×). This proves the fol-
lowing Lemma.

Lemma 4.3.6. Let C a Z/MZ graded extension of Ad(A3). If C is generated by
an object of dimension less than 2, then M is even and

C ≃⟨(f (1),1)⟩ ⊂ A3 ⊠Vecω(Z/MZ),

or 4 divides M and

C ≃GMRZ/2Z(M,ω),

with ω ∈H3(Z/MZ,C×).
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Cyclic extensions of Ad(D4)

As in the Ad(A3) case, there exists interesting cocycles that make the extension
theory of Ad(D4) interesting.

We can restrict out attention to evenM , and the homomorphism φ ∶ Z/MZ→
BrPic(Ad(D4)) is determined either by

1↦Dodd
4

or
1↦P↔Q D

odd
4 ,

as every object in Deven
4 or P↔QDeven

4 has dimension 1, and could not generate all
of C.

Recall that Z(Ad(D4)) forms a Z/3Z × Z/3Z group, with the action of Dodd
4

given by

1 ⊠ P ↔ 1 ⊠Q,
P ⊠ P ↔ P ⊠Q,
Q ⊠ P ↔ Q ⊠Q,

and action of P↔QDodd
4 given by

P ⊠ 1↔ Q ⊠ 1,

P ⊠ P ↔ Q ⊠ P,
P ⊠Q↔ Q ⊠Q.

We now break into two cases, depending on the choice of φ.
Case: 1↦Dodd

4

We compute the cohomology groupH2(Z/MZ,Z/3Z×Z/3Z) to be Z/3Z when
6 divides M , and trivial otherwise. Representatives for the non-trivial cocycles
are given by

T (n,m) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1 ⊠ 1 if n +m <M

P ⊠ 1 if n +m ≥M,

and

V (n,m) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1 ⊠ 1 if n +m <M

Q ⊠ 1 if n +m ≥M,

computed from the recipe of [1].
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As in the Ad(A3) case we can twist the multiplication of ⟨(f (1),1)⟩ ⊂ D+
4 ⊠

Vec(Z/MZ) by either of the two 2-cocycles T or V to get two new quasi-monoidal
categories. These quasi-monoidal categories both have the same fusion ring. The
simple objects are labelled by

{0,1,⋯, 3M

2
− 1}⋃{Xi ∶ 1 ≤ i ≤

M

2
,}

and the commutative fusion rules are

n⊗m = n +m (mod
3M

2
)

n⊗Xi =Xn+i (mod M
2
)

Xi ⊗Xj = (i + j − 1 (mod
M

2
)) ⊕ (i + j − 1 (mod

M

2
) + M

2
) ⊕ (i + j − 1 (mod

M

2
) + 2M

2
) .

As the cohomology group H4(Z/MZ,C×) is trivial, we have from [14, Lemma
4.5] that there exists some associator for both of these quasi-monoidal categories.
As H3(Z/MZ,C×) = Z/MZ, there are M associators for each of these quasi-
monoidal categories, one for each ω ∈ H3(Z/MZ,C×). For the choice of cocycle
T , we call theM extensions the Z/3Z generalised Moore-Read fusion categories of
type (T,M,ω,+) (as there is a unique extension for each ω ∈H3(Z/MZ,C×)), or
GMRT

Z/3Z(M,ω,+) for short. For the choice of cocycle V , we call theM extensions
the Z/3Z generalised Moore-Read fusion categories of type (V,M,ω,+) (again a
unique extension for each ω ∈H3(Z/MZ,C×)), or GMRV

Z/3Z(M,ω,+) for short.
Case: 1↦P↔Q Dodd

4

Again we compute the cohomology group H2(Z/MZ,Z/3Z × Z/3Z) to be
Z/3Z when 6 divides M , and trivial otherwise. In this case representatives for
the non-trivial cocycles are given by

T (n,m) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1 ⊠ 1 if n +m <M

1 ⊠ P if n +m ≥M,

and

V (n,m) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1 ⊠ 1 if n +m <M

1 ⊠Q if n +m ≥M,

In this case we can twist the multiplication of ⟨(f (1),1)⟩ ⊂D−
2N ⊠Vec(Z/MZ)

by the cocycles T and V to construct two families of extensions with the same
fusion rules as above. Again as H3(Z/MZ,C×) = Z/MZ, there areM such exten-
sions for each choice of cocycle. For the choice of cocycle T , we call the M exten-
sions the Z/3Z generalised Moore-Read fusion categories of type (T,M,ω,−) (as
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there is a unique extension for each ω ∈H3(Z/MZ,C×)), or GMRT
Z/3Z(M,ω,−) for

short. For the choice of cocycle V , we call theM extensions the Z/3Z generalised
Moore-Read fusion categories of type (V,M,ω,−) (again a unique extension for
each ω ∈H3(Z/MZ,C×)), or GMRV

Z/3Z(M,ω,−) for short.
We suspect that an application of [14, Theorem 3.1] would show that the

categories GMRT
Z/3Z(M,ω1,+) and GMRV

Z/3Z(M,ω,+) are monoidally equivalent
for some choice of ω1, ω2 ∈ H3(Z/MZ,C×). The same should also hold for the
categories GMRT

Z/3Z(M,ω1,−) and GMRV
Z/3Z(M,ω,−). We were unable to prove

either of these facts., but this does not matter as our main classification Theorem
is not up to monoidal equivalence.

Lemma 4.3.7. Let C a Z/MZ graded extension of Ad(D4). If C is generated
by an object of dimension less than 2, then M is even and

C ≃ ⟨(f (1),1)⟩ ⊂D±
4 ⊠Vecω(Z/MZ),

with ω ∈H3(Z/MZ,C×), or 6 divides M and

C ≃ GMRT
Z/3Z(M,ω,±) or C ≃ GMRV

Z/3Z(M,ω,±),

with ω ∈H3(Z/MZ,C×).

Proof. When 6 does not divide N , the proof is exactly the same as the general
D2N case.

When 6 divides N we can count 6M possible Z/MZ-graded extensions of
Ad(D2N), generated by an object of dimension less than 2. The categories in the
statement of this Lemma construct all 6M of these.

Cyclic extensions of Ad(D10)

Let φ be the homomorphism Z/6Z→ BrPic(Ad(D10) determined by 1↦f(2)↦Q↦P

E7
even. As there are no non-trivial invertible objects in Z(Ad(D10)), we know

from extension theory that there are 6 extensions corresponding to this homo-
morphism, one for each ψ ∈ H3(Z/6Z,C×). All 6 of these categories have the
same fusion rules. We aim to determine these fusion rules.

As φ(3) =Dodd
10 , we must have that the extension is a Z/3Z-graded extension of

D10. Furthermore we can completely determine the D10 bimodules in the Z/3Z-
graded extension. They are E7 and E7. To determine the fusion rules of this
Z/3Z-graded extension of D10 we need to determine a D10-balanced bi-functor
E7 × E7 → E7. At the level of objects there is a unique such functor, which we

70



avoid writing down for now. This D10-balanced bi-functor gives us the fusion
rules for tensoring any two objects in the E7 component of the grading. The D10

bimodule structure of E7 and E7 give us the fusion rules for tensoring an object of
D10 with any other object in the extension. Counting dimensions of the objects
of E7 and E7, we see that every object in the extension must be self-dual. Finally
applications of Frobenius reciprocity gives us the full fusion rules. We call these
6 different Z/6Z-graded extensions of Ad(D10) the DEE+(ψ) categories (recall
there is a unique extension for each ψ ∈H3(Z/6Z,C×)).

The fusion graph for the generating object of dimension 2 cos ( π
18
) of the

DEE+(ψ) fusion category (which we give the distinguished name Ω) is given
by:

1

11

18

10

9

21

14

2 8

13

23

16

20

3

24

17

74 5 6

15

22

19

12

The first ten objects of this category are the D+
10 objects, the next seven are the

E7 objects, and the final seven are the E7 objects. Numerical approximations of
the dimensions of the simple objects in this category are:

{1,1.96962,2.87939,3.70167,4.41147,4.98724,5.41147,5.67128,2.87939,2.87939,

1.96962,2.53209,3.70167,3.87939,4.98724,5.67128,7.29086,

1.96962,2.53209,3.70167,3.87939,4.98724,5.67128,7.29086}

These dimensions all live in the field Q[ξ18]. Full fusion rules for the DEE+(ψ)
fusion categories can in Appendix A

Let φ be the homomorphism Z/6Z→ BrPic(Ad(D10)) determined by 1↦P↔Q

E7
even. By the same argument as above we can show the existence of the 6
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DEE−(ψ) fusion categories (again one for each ψ ∈ H3(Z/6Z,C×)), which have
the same fusion rules as the DEE+(ψ) fusion categories.

Lemma 4.3.1. Let C a Z/MZ graded extension of Ad(D10). If C is generated
by an object of dimension less than 2, then M is even and

C ≃ ⟨(f (1),1)⟩ ⊂D±
10 ⊠Vecω(Z/MZ),

with ω ∈H3(Z/MZ,C×), or 6 divides M and

C ≃ ⟨(Ω,1)⟩ ⊂DEE±(ψ) ⊠Vecω(Z/MZ)

with ψ ∈H3(Z/6Z,C×), and ω ∈H3(Z/MZ,C×)/Z/6Z .

Proof. We begin by classifying homomorphisms from the cyclic group Z/MZ to
BrPic(Ad(D10)) that may give rise to extensions generated by an object of di-
mension less than 2. Consulting the table of Section 4.2 shows that the only
bimodules over Ad(D10) that contain an object of dimension less than 2, are
Dodd

10 , E7
even, and E7

even
, along with the twistings of each by the 5 non-trivial

auto-equivalences of Ad(D10). This leaves us with a total of 18 homomorphisms
to consider. Fortunately [14, Theorem 3.1] shows that we only need to homomor-
phisms Z/MZ to BrPic(D10), up to post-composition by the inner automorphisms
coming from one of the six bimodules Deven

10 , P↔QDeven
10 , P↔f(2)Deven

10 , f(2)↔QDeven
10 ,

f(2)↦P↦QD
even
10 , and f(2)↦Q↦PD

even
10 . As we have described the group structure of

BrPic(Ad(D10)) in Chapter 3, we can directly compute that we only have to
consider the 4 homomorphisms:

1↦Dodd
10 ,

1↦P↔QD
odd
10 ,

1↦f(2)→Q→PE7
even,

1↦P↔QE7
even.

We finish our proof in two cases.
Case: M is even and 1↦Dodd

10 or P↔QDodd
10

As H2(Z/MZ, Inv(Ad(D10))) = {e}, and H3(Z/MZ,C×) = Z/MZ, we have
M possible Z/MZ-graded extensions of Ad(D10) for each of these two homomor-
phisms. These 2M extensions are all realised by the categories

⟨(f (1),1)⟩ ⊂D+
10 ⊠Vecω(Z/MZ),
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and
⟨(f (1),1)⟩ ⊂D−

10 ⊠Vecω(Z/MZ),

for ω ∈H3(Z/MZ,C×).
Case: 6 divides M and 1↦f(2)→Q→P E7

even or P↔QE7
even

Again, as H2(Z/MZ, Inv(Ad(D10))) = {e} and H3(Z/MZ,C×) = Z/MZ, we
have M possible Z/MZ-graded extensions of Ad(D10) for each of these two ho-
momorphisms. These 2M extensions are all realised by the categories

C ≃ ⟨(Ω,1)⟩ ⊂DEE+(ψ) ⊠Vecω(Z/MZ)

and
C ≃ ⟨(Ω,1)⟩ ⊂DEE−(ψ) ⊠Vecω(Z/MZ),

for ψ ∈H3(Z/6Z,C×), and ω ∈H3(Z/MZ,C×)/(Z/6Z).

Proof of Theorem 1.0.2

We now put all the pieces together to give the proof of Theorem 1.0.2.

Proof. Let C be a unitary fusion category generated by a normal object X of
dimension less than 2. Then by Theorem 1.0.1 C is a unitary cyclic extension
of one of Ad(AN), Ad(D2N), Ad(E±

6 ), or Ad(E±
8 ). As the categories Ad(AN),

Ad(D2N), Ad(E±
6 ), and Ad(E±

8 ) are completely unitary, we have that every ex-
tension of one of these categories is monoidally equivalent to a unitary category.
The previous results of this Subsection classify all cyclic extensions of these cate-
gories (except Ad(A7)) generated by an object of dimension less than 2. In every
case, the generating object of dimension less than 2 is normal.

4.4 The gap at dimension
√
2 +

√
2

As has been previously mentioned, we are not able to give a complete classification
of unitary categories generated by a normal object of dimension less than 2. The
issue we have is that there are possibly interesting extensions of Ad(A7) that we
can’t construct, or prove non-existence for. Recall that the Brauer-Picard group
of Ad(A7) is D2⋅4. The possible interesting extensions of Ad(A7), generated by
a normal object of dimension less than 2 comes from the copy of Z/4Z ⊂ D2⋅4.
Unfortunately as H3(Z/4Z, Inv(Ad(A7))) is non-trivial, there is no reason to
expect that both obstructions can be made to vanish. Furthermore we have found
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it very difficult to compute the obstruction in H3(Z/4Z, Inv(Ad(A7))) explicitly
and check if it vanishes or not. Thus we can not complete the classification at a
single dimension,

√
2 +

√
2.

Supposing the possible interesting Z/4Z-graded extensions of Ad(A7) did ex-
ist, then we are able to determine the fusion graph for the generating object of
dimension

√
2 +

√
2. It is as follows

1

2

5

7

8

10

12

Furthermore we are able to determine associative fusion rules for these possible
categories (which provides some evidence for their existence). It would be very
interesting to show the existence of these categories, mainly to complete the
classification of unitary categories generated by a normal object of dimension
less than 2, but also to provide a new example of an interesting new fusion
category. We are currently working on a promising line of attack to show the
existence of these categories. The idea being that such a category would be
a Z/2Z-graded extension of (Ad(A7) ⊠ Ising)//Rep(Z/2Z). The problem now
reduces to classifying invertible bimodules over (Ad(A7) ⊠ Ising)//Rep(Z/2Z),
as the obstruction in H3(Z/4Z, Inv(Ad(A7) ⊠ Ising//Rep(Z/2Z))) can be seen
to vanish at the level of fusion rules. As this line of attack is very recent, we
haven’t been able to perform the necessary calculations to include the result
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in this thesis. However we are optimistic that this approach will provide an
answer to the existence of the possible interesting Z/4Z-graded extensions of
Ad(A7), and thus complete the classification of categories generated by a normal
object of dimension less than 2. We will address the full classification in a future
publication.
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Appendix A

Fusion Rules for the DEE fusion
categories

In this appendix we display the fusion graphs ΓX for each simple object X of the
DEE categories. Recall that there are 24 simple objects in this category, and the
11-th object is the tensor generator of dimension 2 cos( π18).

Γ2 =

1 2 3 4 5 6
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11
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22

23
24
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Γ6 =
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Γ9 =
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