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1. Introduction

Leavitt path algebras were first introduced by Abrams and Aranda Pino in [4] as an

algebraic analogue of graph C∗-algebras. This analogue is in the sense that the C∗-algebra

of a graph is the norm completion of its Leavitt path algebra [21, Theorem 7.3]. These

algebras were initially defined only for row-finite directed graphs with no sinks, but the

later work [3] generalizes these algebras to any directed graph. Many of the theorems

initially proven for the row-finite, no sinks case have been shown to hold true in the

arbitrary case as well under more general conditions, for an example see [21, Theorem

6.18]. Leavitt path algebras form a broad class of algebras that cover many well known

classes of algebras such as Matrix algebras and Laurent polynomial algebras [4, Example

1.4]. It turns out that many of the properties of a Leavitt path algebra are uniquely

determined by the structure of the underlying graph. For examples of this see [4, Theorem

3.11] for a characterization of simple Leavitt path algebras, and [2, Theorem 4.2] for the

description of the center of simple Leavitt path algebras. Because of this correlation

between the structure of the graph and its Leavitt path algebra we can construct highly

non-trivial examples of algebras satisfying certain conditions by simply constructing a

graph that satisfies the equivalent conditions.

A generalization of Leavitt path algebras of row-finite graphs with no sinks was intro-

duced by Aranda Pino, (J.) Clark, an Huef and Raeburn in [7] in which they construct a

class of algebras associated to row-finite higher rank graphs ( introduced in [12]) with no

sinks. They call this new class of algebras Kumjian-Pask algebras. Since their introduc-

tion in 2011 there have been several papers published on the structure of these algebras.

These include a classification of the ideal structure [7], as well as a classification of the cen-

ter [1]. As in the case with Leavitt path algebras the structure of Kumjian-Pask algebras

seems to be uniquely determined by the structure of the underlying k-graph. This class

of algebras include several interesting algebras not covered under Leavitt path algebras.

For example a Laurent polynomial algebra in multiple dimensions can be realized as a

Kumjian-Pask algebra [7, Remark 7.2]

Let G be an ample groupoid and R a commutative ring with identity. The Steinberg

algebra AR(G) was first introduced in [18] as a model for inverse semi-group algebras.

They were also examined in [9] with R := C as a generalization of Kumjian-Pask algebras,

and in particular, Leavitt path algebras of row-finite directed graphs with no sinks. These

algebras are of use to study as they seem to include examples of algebras that are not

Kumjian-Pask algebras ( see [9, Example 5.9]). They also allow the use of the groupoid

structure in proofs which may provide new insight on the theory of Kumjian-Pask algebras

as well as simplify arguments in existing proofs.



4

Steinberg algebras have not yet been extensively studied in the literature. Since their

introduction in [18] there have been 5 papers published [19][11][8][9][6] on the subject.

These papers have mostly dealt with generalizing results known for Kumjian-Pask alge-

bras and the appropriate Leavitt path algebras up to the more general case of Steinberg

algebras.

Steinberg, along with introducing them, proves several theorems about Steinberg al-

gebras in [18]. He characterizes the center of AR(G) in the general case as well giving

necessary and sufficient conditions for the algebra to be unital. He also shows that the

class of algebras known as Semigroup algebras are in fact Steinberg algebras. This pro-

vides another source of examples that may prove useful in further understanding these

algebras. In his follow up paper [19], Steinberg studies the simplicity, primitivity and

semiprimitivity of Steinberg algebras.

In [9] the authors give a proof that the class of Steinberg algebras generalizes the class

of Kumjian-Pask algebras. They also generalize several known results about Kumjian-

Pask algebras up to the Steinberg algebra setting. An important one of these is a Cuntz-

Krieger uniqueness theorem which characterizes the injectivity of a homomorphism from a

Steinberg algebra to an R-algebra when the underlying groupoid is topologically principle.

Cuntz-Krieger uniqueness theorems were initially introduced for graph C∗-algebras and

proved to be an important tool for classifying ideals in these algebras. For example in [17]

the author uses the uniqueness theorem to completely classify the graded ideal structure.

Because of the usefulness of the Cuntz-Krieger uniqueness theorem analogous algebra

versions of have been established for Leavitt path algebras [21][20] and Kumjian-Pask

alebras [7].

Still in the case where R := C the paper [6] makes the first attempt at classifying

the ideal structure of these algebras by finding a necessary and sufficient condition for a

Steinberg algebra to be simple. They also characterize the ideal structure of a groupoid

C∗-algebra when the underlying groupoid is strongly effective(see Section 2) and second

countable. This later result is of particular importance to us as we base the main proof

of this thesis on the methods of [6, Corollary 5.9].

The authors of [11] give a sufficient condition for two Steinberg algebras to be Morita

equivalent ( see [15, Definition 1]). They show that if groupoids are equivalent in the

sense of [11, Definition 4.1] they have Morita equivalent Steinberg algebras. This result

is analogous to a similar theorem known for groupoid C∗-algebras.

In [8] we attempt to generalize the results of [6] and [9] to the case where R is any

commutative ring with identity. This was motivated by a similar generalization of Leavitt

path algebras as done in [21] by Tomforde. Here the we combine the techniques used in
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[21] to adjust the proofs of several theorems in [6] and [9] to prove these broader results.

In particular we use the idea of a basic ideal from [21] which stops the ideal structure of

the underlying ring effecting the ideal structure of the algebra, allowing us to focus on the

effect of the groupoid structure. In this thesis we are considering Steinberg algebras over

arbitrary commutative rings with identity so we will also use the notion of a basic ideal.

Of the theorems proved in this paper of particular relevance to this thesis is an extended

version of a Cuntz-Krieger uniqueness theorem that applies to Steinberg algebras over over

arbitrary commutative rings with identity. We also relax the condition of the groupoid

being topologically principle to the weaker condition of effective. In addition we give the

complete classification of basically simple Steinberg algebras.

In this thesis we attempt to further classify the ideal structure of Steinberg algebras. In

section 4 we prove an analogous result to a known theorem for groupoid C∗-algebras shown

in [6, Theorem 4.9]. This theorem characterizes the basic ideal structure of AR(G) when

G satisfies a condition which we call strongly effective. We also weaken the hypothesis that

was used in the groupoid C∗-algebra version as we don’t require G to be second countable.

Due to the similar nature of the proofs it may be possible to prove this stronger result for

groupoid C∗-algebras using similar techniques that we use in our proof. C∗-algebraists

may find the result of section 4 interesting as it shows that the norm of a groupoid

C∗-algebra does not effect the ideal structure in this setting.

In section 4 we use the basic ideal theory we have already established in section 4 to

study the more general ideal theory. As we are now dealing with non-basic ideals we now

also have to consider the structure of the ring as well as the structure of the groupoid as

both can effect the ideal structure of a Steinberg algebra as we show in our preliminaries.

Non-basic ideals were studied in the Kumjian-Pask algebra setting where the authors

create a map from the set of ideals in the ring to the ideals of a Kumjian-Pask algebra. In

particular they show that this map is bijective when the underling higher rank graph of

the algebra satisfies the equivalent conditions of effective and minimal. Motivated by this

idea we extend the map they introduce so that it also takes into account the structure of

the underlying groupoid, and hence includes more of ideals of the algebra. We initially

hoped to show this map was a bijection when G is strongly effective but unfortunately

we have not been able to prove it is so. We show that the map is injective in general

and bijective when G is minimal and effective which is the extention of the Kumjian-Pask

alegbra result. We leave that the map is surjective when G is strongly effective as a

conjecture that could be investigated as an extension to this thesis. We include a lemma

at the end of this thesis that summarizes our work on the conjecture.
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2. Preliminaries

2.1. Groupoids. A groupoid is a generalization of a group where composition is only

defined between certain pairs of elements. The easiest way to define a groupoid is as a

small category with inverses. However in this thesis we give a more intuitive definition

for the reader that is equivalent. Following [16, Definition 2.1] we define a groupoid as

follows

Definition 2.1. Let G be a set and let G(2) be a subset of G×G. Suppose there is a map

(α, β)→ αβ from G(2) → G and an involution α→ α−1 on G, then we call G a groupoid

if the following conditions hold:

(1) If (α, β) and (β, γ) are in G(2), then so are (αβ, γ) and (α, βγ), and the equation,

(αβ)γ = α(βγ) holds.

(2) For all α ∈ G, (α−1, α) ∈ G(2) and if (α, β) ∈ G(2), then α−1(αβ) = β and (αβ)β−1 =

α.

We define the functions r and s on G by the formulae r(α) = αα−1 and s(α) = α−1α,

these are called the range and source maps respectively. These maps give us a convenient

way to see if elements are composable in a groupoid with the following remark

Remark 2.2. For any α, β ∈ G we have (α, β) ∈ G(2) if and only if s(α) = r(γ).

Suppose (α, β) ∈ G(2), then αβ = γ for some γ ∈ G and so α = γβ−1. Thus

s(α) = s(γβ−1) = s(β−1) = r(β).

Suppose s(α) = r(γ), then α−1α = ββ−1. We can left multiply this equation by α

and right multiply by β by part (2) of the definition of a groupoid, this leaves us with

αβ = αβ which implies that (α, β) ∈ G(2).

We call the common image of r and s the unit space of G and denote it G(0).

We define the composition between two subsets A and B of a groupoid as

AB := {αβ : α ∈ A, β ∈ B, s(α) = r(β)}.

In the special case where A and B are both subsets of units this composition reduces to

set theoretic intersection. This follows as the range and source of a unit µ are both equal

to µ, so we get

AB = {µν : µ ∈ A, ν ∈ B, s(µ) = r(ν)}

= {µν : µ ∈ A, ν ∈ B, µ = ν}

= {µµ : µ ∈ A, µ ∈ B}

= {µ : µ ∈ A, µ ∈ B}
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as units are idempotents by part (2) of the definition of a groupoid . To simplify our

notation, for a subset D ⊆ G(0) we define

GD := s−1(D) and GD := r−1(D).

We now present a few examples of groupoids.

Examples 2.3. (1) An easy example of a groupoid is a group. Here G(2) = G × G

and the range and source maps map to the identity e of the group and hence

G(0) = {e}.
(2) The set of all invertible square matrices is a groupoid under multiplication with

composition defined between matrices of the same dimensions. Here the range

and source maps are equal and map an n×n-matrix to the n-dimensional identity

matrix.

(3) Given a countable directed row-finite graph with no sources E we can construct a

corresponding groupoid first introduced in [14]

GE := {(x, n, y) : x, y ∈ E∞, σl(x) = σk(y), l − k = n}

where E∞ is the set of all infinite paths in the graph, and the function σn removes

the first n edges off a path. With composition defined by

(x, n, y)(y,m, z) := (x, n+m, z)

and inverse by

(x, n, y)−1 := (y,−n, x),

it is shown in [14] that GE is a groupoid.

We call G a topological groupoid if G is endowed with a topology such that the inverse

and composition maps are continuous. Note that this implies that the range and source

maps are continuous as well as they are the groupoid composition of the identity and

inverse map.

A bisection of G is a subset B of G such that both r|B and s|B are homeomorphisms.

The set multiplication of bisections of a groupoid is nicely behaved with the product of

two bisections itself being a bisection [18, Proposition 2.3].

We call G étale if both r and s are local homeomorphisms and ample if it is étale and

the topology of G has a basis of compact bisections. For the remainder of this thesis we

will only be working exclusively with Hausdorff ample groupoids. The reason we do this

becomes clear once we introduce Steinberg Algebras.

Hausdorff ample groupoids have several nice properties that we breifly state now. An

immediate corollary to G being ample is that G is locally compact, this is because we can
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find a compact open bisection around every point and hence a compact set. As ample

implies étale [9, Lemma 2.1] we have that the functions r and s are local homeomorphisms,

and hence open maps. In particular the unit space G(0) is open as it is the image of G

under the maps r and s. It can also be shown as in [16, Section 2.1] that when G is

Hausdorff, G(0) is closed. Thus for the rest of this thesis we can assume that the unit

space of whatever groupoid we are working with is both open and closed (clopen).

A groupoid G is said to be effective if every open bisection B ⊆ G \ G(0) contains an

element α such that r(α) 6= s(α). This definition is given in [6, Lemma 3.1] along with

several other equivalent characterizations. One of these equivalent characterizations that

is particularly useful in the classification of ideals in AR(G) is that a groupoid is effective

if and only if for every compact B ⊆ G\G(0) and open K ⊆ G(0) there exists a non-empty

open K0 ⊆ K such that K0BK0 = ∅. We expand on this characterization below with a

lemma that we use in section 5.

Lemma 2.4. Let G be an Hausdorff ample groupoid. Then G is effective if and only if

for every open K ⊆ G(0) and compact B ⊆ G such that K and B are disjoint, there exists

nonempty compact open K0 ⊆ K such that K0BK0 = ∅.

Proof. Suppose G is effective and fix B and K as in the statement of the proof. We

write BG(0) = B ∩ G(0) and BG = B \ G(0), these sets are compact as G(0) is clopen.

We use the equivalent definition of effective [6, Lemma 3.1 (1) → (4)] to get nonempty

open K0 ⊆ K such that K0BGK0 = ∅. We can assume K0 is compact as G is ample, so

if K0 was not compact we could select a compact open subset of K0 that still satisfies

the required condition. We can see that K0 is disjoint from BG(0) as it is a subset of K,

thus as composition of sets of units in a groupoid is the set theoretic intersection we get

K0BG(0)K0 = ∅. Therefore K0BK0 = K0(BG ∪BG(0))K0 = K0BGK0 ∪K0BG(0)K0 = ∅.
Now suppose the reverse assumption and let B ⊆ G \ G(0) be compact and K ⊆ s(B)

be open. These sets are clearly disjoint so we get non-empty compact open K0 ⊆ K such

that K0BK0 = ∅. As K0 ⊆ s(B) there exists γ ∈ B with s(γ) ∈ K0 but we have that

K0{γ}K0 = ∅ so r(γ) /∈ K0 and hence r(γ) 6= s(γ). �

For groupoids there is a similar definition called topologically principle (see the pre-

liminarys of [9]). This is a stronger condition than effective in general [5, Remark 3.7],

however when G is second countable these definitions coincide [5, Remark 3.6]. As stated

in the introduction several results shown to hold for topologically principle groupoids have

also been shown to be true for effective groupoids.
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We call a subset D of the unit space invariant if s−1(D) = r−1(D), or equivalently

r(γ) ∈ D if and only if s(γ) ∈ D for all γ ∈ G. If D is invariant then GD is itself a

groupoid with unitspace D and GD = GD.

Remark 2.5. It suffices to show when proving something is invariant to show that r(γ) ∈ D
implies s(γ) ∈ D. If this is the case then suppose s(γ) ∈ D, then r(γ−1) ∈ D and so

r(γ) = s(γ−1) ∈ D.

Remark 2.6. For any subset K of the unit space, we can take [K] := r(s−1(K)) to get

the saturation of K, that is the smallest invariant set containing K. To show this set is

invariant let r(γ) ∈ r(s−1(K)), then r(γ) = r(α) for some α ∈ G(0) with s(α) ∈ K. This

implies that

s(γ) = r(γ−1) = r(γ−1α) ∈ s−1(K),

as s(γ−1α) = s(α) ∈ K.

To see this is the smallest such set let D ⊆ G(0) be invariant such that K ⊆ D ⊆ [K].

Let µ ∈ [K], then µ = r(γ) for some γ ∈ G with s(γ) ∈ K. This implies that s(γ) ∈ D,

thus as D is invariant, µ = r(γ) ∈ D.

We say that a groupoid G is minimal if G(0) has no nontrivial open invariant subsets.

We say a groupoid is strongly effective if for every closed invariant set D ⊆ G(0) we

have that GD is effective. Note that this definition has not been used in the literature

before. We choose to give this property a name as it will appear heavily in this thesis. A

similar version of this property has been previously used in the literature. The example

mainly of interest to us is in [6, Theorem 5.9] where they use the property that GD is

topologically principle for each closed invariant D ⊆ G(0).

We now present a few examples of Hausdorff ample groupoids.

Examples 2.7. (1) Let E be a directed row-finite graph with no sinks, and consider

the groupoid GE generated by this graph as in 2.3. We equip this groupoid with

the topology described in [14, section 2]. For any finite path α in E we define the

set

Z(α) := {x ∈ P (E) : x1 = α1, . . . , x|α| = α|α|},

where P (E) is the set of all finite paths in E. Then the sets

Z(α, β) := {(x, k, z) : x ∈ Z(α), y ∈ Z(β), k = |β| − |α|, xi = yi+k for i > |α|}

form a basis of compact open bisections for GE[14, Proposition 2.6], hence GE is

Hausdorff ample. In particular every cycle in E has an exit then GE is effective[13,

Lemma 3.4]. While it may appear to the reader the the definitions of strongly
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effective and effective are equivalent this is not the case. The following graph

demonstrates this as every loop has an exit, however the subset S = {eee . . .} is

closed and invariant. When we restrict our groupoid to this subset we can see it

is isomorphic to Z and hence not effective.

(2) Let G be a finite group with the discrete topology, then G is a minimal Hausdorff

ample groupoid. However G is not effective except for the trivial group as the

range and source maps in a group are always equivalent.

2.2. Steinberg Algebras. Let R be a commutative ring with identity, for any function

f : G→ R we define the support of f to be

supp(f) := {γ ∈ G : f(γ) 6= 0}.

We define AR(G) as the set of all locally constant functions f : G → R with compact

support. In this case locally constant means that at every point of G there exists an open

neighborhood of that point on which f is constant.

We define addition and scalar multiplication on this set to be pointwise, and multipli-

cation between elements f, g ∈ AR(G) as follows

(f ∗ g)(α) =
∑

r(β)=r(α)

f(β)g(β−1α) for every α ∈ G.

We can see from Lemma 2.2 that this sum is over all β such that the product β−1α is

defined. It is proven in [18, Proposition 3.5] that with these operations the set AR(G)

becomes an R-algebra. It is clear now why we restricted our attention to Hausdorff ample

groupoids as this is the condition that guarantees that the convolution sum is finite [18,

Propostion 3.5] and hence allows us to form this algebra.

This algebra was first introduced by Steinberg in [18], hence we refer to these algebras

as Steinberg algebras. These algebras were also studied in [9] as generalizations of Leavitt

path algebras. In that paper they prove that AC(GE) is isomorphic to the Leavitt path
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algebra LC(E), where E is a directed row-finite graph with no sinks, and GE its associated

groupoid as in 2.7.

The aim of this thesis is to identify ideals in AR(G). As in the case for Leavitt path

algbras we hope to show that the ideal structure of the algebra is determined entirely by

the structure of the groupoid G. However when R is not a field we run into the problem

of ideals in our ring generating ideals in the algebra, the following example demonstrates

this.

Example 2.8. Let G be the trivial group consisting of just the identity e, and R a com-

mutative ring with identity. Then AR(G) consists of the constant functions from e to the

ring, hence we can see that AR(G) ∼= R. Therefore every ideal of the ring R is going to

carried to a unique ideal of the algebra AR(G).

We can clearly see in this case that different rings will give the algebra different ideal

structures. To get around this problem we introduce the idea of a basic ideal. These were

first introduced by Tomforde in [20] for Leavitt path algebras who encountered a similar

problem. We generalized the idea of basic ideals to Steinberg algebras in [8] with the

following definition.

Definition 2.9. We call I a basic ideal of AR(G) if I is an ideal and if for any r ∈ R and

K ⊆ G(0) a compact open set, we have r1K ∈ I implies that 1K ∈ I. We say AR(G) is

basically simple if it contains no non-trivial basic ideals.

We can see in our above example that every non-empty basic ideal must contain the

function 1e. Therefore as R1e = AR(G) we can see that this algebra is basically simple.

This agrees with the results of [8] which states that AR(G) is basically simple if and only

if G is both effective and minimal. Note that G is effective in this case as G \ G(0) is

empty.



12

3. Basic Results for Steinberg Algebras

In this section we provide the reader with some of the basic theory of Steinberg algebras

that we will use in the rest of this thesis. This will cover many standard techniques

currently used in the field as well an important theorem that will be important when

classifying the ideal structure of these algebras. We begin this section by giving a second

characterization of the algebra.

Remark 3.1. It is shown in [9, Lemma 3.3] that AR(G) can be realized as the finite linearR-

span of characteristic functions 1B where B is a compact open bisection. More specifically

as shown in [9, Remark 2.4] we can write each f ∈ AR(G) as f =
∑

U∈F aU1U where F is

a finite family of disjoint compact open bisections. Steinberg shows the multiplication of

these characteristic functions is nicely behaved in [18, Proposition 3.5] with

1B ∗ 1D = 1BD,

for any compact open bisections B and D.

This alternative way to view functions in AR(G) tends to be much easier to work with.

This can be seen in the literature as most proofs in use this characterization. Therefore

for the rest of this thesis we will use this important property without reference. In a slight

abuse of notation we will often write f ∈ AR(G) as f =
∑
aU1U , whenever the reader

encounters this always assume that this sum is finite with each U disjoint from the rest.

While multiplication between elements of AR(G) is usually quite complicated due to the

convolution there are a few cases where it reduces to a much simpler form. One of these

cases we make use of in this thesis is multiplication by characteristic functions supported

entirely on units.

Remark 3.2. Given K ⊆ G(0) and f =
∑
aU1U ∈ AR(G) we have

(f ∗ 1K) =
∑

aU1UK =
∑

aU1U∩s−1(K) = f |GK

and similarly for right multiplication

(1K ∗ f) =
∑

aU1KU =
∑

aU1U∩r−1(K) = f |GK .

In particular this implies that multiplication between two characteristic functions sup-

ported entirely on units is pointwise, and hence multiplication between any two functions

supported entirely on units is point-wise.

This is a good example of how this alternative characterization of functions can result

in simpler methods. If one attempts to prove the above result with the initial classification

of functions in AR(G) one can see it requires several more steps.
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Due to the fact the functions of AR(G) are locally constant it may initially appear to

the reader that these functions are not continuous. However in [8, Remark 2.2] it is shown

that a locally constant function f : G→ R is necessarily continuous for any topology on

the ring R as long as G is Hausdorff, hence we can regard AR(G) as an algebra continuous

functions. The continuity of these functions allows for some elegant proofs of results that

initially do not seem straightforward ( for example see Lemma 4.2).

It was shown in [9, Lemma 3.2] that the support of a continuous locally constant

function f : G→ C is clopen. The same argument holds for functions f : G→ R for any

ring R, hence we can regard the support of a function f ∈ AR(G) as

supp(f) := {γ ∈ G : f(γ) 6= 0}.

In the following sections we will often need to work with sub-algebras of the form

{f ∈ AR(G) : supp(f) ⊆ H} where H is an open invariant subset of G(0). We introduce

a few alternative characterizations for this sub-algebra to simplify our notation.

We first note that {f ∈ AR(G) : supp(f) ⊆ H} = {f ∈ AR(G) : f |G\H ≡ 0}. We give

the quick proof of this below. Let f ∈ {f ∈ AR(G) : supp(f) ⊆ H} and take α ∈ G \H,

then α /∈ H so f(α) = 0. Let f ∈ {f ∈ AR(G) : f |G\H ≡ 0} and take α /∈ H, then

α ∈ G \H so f(α) = 0.

We present a slightly more complicated characterization in the following remark.

Remark 3.3. For any open groupoid H ⊆ G we can identify the sub-algebra {f ∈ AR(G) :

supp(f) ⊆ H} as the algebra AR(H). To do this we embed the elements of AR(H) into

AR(G) with the inclusion map

ι(f)(γ) =

{
f(γ) : γ ∈ H
0 : otherwise

and claim that this map is a homomorphism with ι(AR(H)) = {f ∈ AR(G) : supp(f) ⊆
H}.

Let ι(f) ∈ ι(AR(H)), as H is open, open sets in H are open in G, so ι(f) is locally

constant on G. We also have supp(ι(f)) is compact in G as for any open cover in G we

can take the intersection with H to get an open cover in H, hence ι(f) ∈ AR(G). We

have supp(ι(f)) ⊆ H by the definition of ι.

Let f ∈ {f ∈ AR(G) : supp(f) ⊆ H}, then by restricting the domain of f to H we can

see that f = ι(fH).

To complete the proof we need to show it is also a homomorphism, the only non-trivial

requirement to check is to show it preserves algebra multiplication. Let f, g ∈ AR(H) and
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take γ ∈ G, if γ /∈ H then we are done. Otherwise

ι(f∗g)(γ) = (f∗g)(γ) =
∑

r(β)=r(γ)

f(β)g(β−1γ) =
∑

r(β)=r(γ)

ι(f)(β)ι(g)(β−1γ) = (ι(f)∗ι(g))(γ).

We simply refer to this sub-algebra with the slightly lazy notation AR(H). When the

reader encounters this we mean the sub-algebra ι(AR(H)) of AR(G). It is important to

note however that when we are dealing with a closed sub-groupoid H that we can not

embed AR(H) in the same way. When we are dealing with these we regard AR(H) as an

algebra in its own right.

An important special case that we will make use of is when E is an open subset of

units, in which case AR(E) is an algebra where the convolution reduces to point-wise

multiplication.

An important theorem for Steinberg algebras that we will use in the following sections

is the Cuntz-Krieger uniqueness theorem [8, Theorem 3.2]. This theorem states that for

an effective groupoid G, every non-injective R-algebra homomorphism from AR(G)→ A

is non-zero on some r1K ∈ AR(G(0)). This theorem is of use to us as it has an important

corollary. This corollary states that for an effective groupoid, every non-trivial ideal

contains a function supported entirely on the unit space of the groupoid. This corollary

can in fact be expanded on as we do in Lemma 5.5.
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4. Basic Ideal Structure

In this section we present our first classification of the basic ideal structure of Steinberg

algebras. The main result of this section is based on [6, Theorem 5.9] which proves an

analogous result for groupoid C∗-algebras. However the assumptions they use are weaker

than the ones we use here, in particular they state that G must be second countable and

topologically principle.

Theorem 4.1. Let G be an ample, Hausdorff groupoid. Suppose G is strongly effective,

then

D 7→ {f ∈ AR(G) : f |GD ≡ 0}

is a bijection from the closed invariant subsets of G(0) onto the basic ideals of AR(G).

Before we can prove this theorem we first need to prove a few technical lemmas. The

first two of these deal with the injectivity of the map.

Lemma 4.2. Let G be an ample, Hausdorff groupoid, and D a subset of G(0). Then

{f ∈ AR(G) : f |GD ≡ 0} = {f ∈ AR(G) : f |GD̄ ≡ 0}

Proof. Let g ∈ {f ∈ AR(G) : f |GD ≡ 0}, then

g(s−1(D̄)) = g(s−1(D)) ( as the source map is a continuous open map )

⊆ g(s−1(D)) ( as g is continuous )

= {0} = {0}.

Thus g ∈ {f ∈ AR(G) : f |GD̄ ≡ 0}. The reverse inclusion is trivial as GD ⊆ GD. �

Lemma 4.3. Let G be an ample, Hausdorff groupoid, and D,E subsets of G(0). Then

D̄ = Ē if and only if

{f ∈ AR(G) : f |GD ≡ 0} = {f ∈ AR(G) : f |GE ≡ 0}.

Proof. Suppose that D̄ = Ē, and let g ∈ {f ∈ AR(G) : f |GD ≡ 0}. By Lemma 4.2 we

have that g ∈ {f ∈ AR(G) : f |GD̄ ≡ 0} = {f ∈ AR(G) : f |GĒ ≡ 0} which implies that

g ∈ {f ∈ AR(G) : f |GE ≡ 0} using Lemma 4.2 again. The reverse inclusion uses the same

argument with E and D interchanged.

Now suppose that {f ∈ AR(G) : f |GD ≡ 0} = {f ∈ AR(G) : f |GE ≡ 0}, and let α ∈ D̄.

Assume by way of contradiction that α /∈ Ē, then there exists an open set U containing

α that doesn’t intersect E ( we can assume U ⊆ G(0) as G(0) is open). As G is ample,
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there exists a compact open set K ⊆ U containing α. We can see that K is disjoint from

E, so by Lemma 4.2 we get

1K ∈ {f ∈ AR(G) : f |GE ≡ 0} = {f ∈ AR(G) : f |GD ≡ 0} = {f ∈ AR(G) : f |GD̄ ≡ 0}.

This implies that K and D̄ are disjoint, a contradiction as α is contained in both sets.

Thus D̄ ⊆ Ē, the reverse inclusion follows with D and E interchanged. �

With these lemmas it is now easy to show the injectivity of the map defined in 4.1. We

present this in a separate lemma as it does not require the assumption that G is strongly

effective.

Lemma 4.4. Let G be an ample Hausdorff groupoid and R a commutative ring with

identity, then the map given in Theorem 4.1 is injective and maps into the basic ideals of

AR(G).

Proof. First we claim that if D is a closed invariant subset of G(0) then {f ∈ AR(G) :

f |GD ≡ 0} is a basic ideal. To prove this let g ∈ AR(G), h ∈ {f ∈ AR(G) : f |GD ≡ 0} and

α ∈ GD, then we have that

(g ∗ h)(α) =
∑

β:r(β)=r(α)

g(β)h(β−1α).

For each β ∈ G we have that s(β−1α) = α−1ββ−1α = s(α) ∈ D. Thus β−1α ∈ GD, so

h(β−1α) = 0 and therefore (g ∗ h)(α) = 0. We also have that

(h ∗ g)(α) =
∑

β:r(β)=r(α)

h(β)g(β−1α).

As α ∈ GD we get that α ∈ GD as D is invariant, so r(α) ∈ D. Thus for any β ∈ G

with r(β) = r(α) we get that r(β) ∈ D. Therefore β ∈ GD = GD as D is invariant, so

h(β) = 0. Hence (h ∗ g)(α) = 0, and so {f ∈ AR(G) : f |GD ≡ 0} is an ideal. The fact it is

a basic ideal follows from the construction of the set, as for any r ∈ R \ {0} and compact

open K ⊆ G(0) we have that r1K |GD = 0⇔ 1K |GD = 0.

To see this map in injective, let D and E be closed subsets of G(0) such that D 6= E.

Then Lemma 4.3 implies that {f ∈ AR(G) : f |GD ≡ 0} 6= {f ∈ AR(G) : f |GE ≡ 0}. �

To show the surjectivity we need to find an inverse map. We will show that given a

basic ideal I, the map I 7→
⋂

f∈I∩AR(G(0))

f−1(0) is the inverse.

Lemma 4.5. Let G be an ample, Hausdorff groupoid, and I a basic ideal of AR(G). Then

the set

D :=
⋂

f∈I∩AR(G(0))

f−1(0)
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is a closed invariant subset of G(0).

Proof. If I ∩ AR(G(0)) is empty, then D = G(0) which is trivially invariant, so we can

assume I∩AR(G(0)) is non-empty. We will show D is invariant by proving its complement

is invariant. Suppose that s(γ) /∈ D, then there exists f ∈ I ∩ AR(G(0)) such that

f(s(γ)) 6= 0. We can write

f =
∑
K∈F

aK1K ,

where F is a finite collection of disjoint compact open subsets of G(0). We have that

s(γ) ∈ supp(f) so there exists a unique K0 ∈ F such that s(γ) ∈ K0, and as G is ample

there exists a compact open bisection B that contains γ. Note that we can assume that

s(B) ⊆ K0 by taking the intersection of B with s−1(K0). Then

1B ∗ f ∗ 1B−1 =
∑
K∈F

aK1BKB−1 = aK01BK0B−1 ,

as BKB−1 = {r(β) : β ∈ B and s(β) ∈ K} for each K ∈ F , so we can see that

BKB−1 = ∅ for every K 6= K0 as F is a disjoint family. Thus 1B ∗ f ∗ 1B−1(r(γ)) 6= 0, so

r(γ) /∈ D. To see that D is closed notice that f−1(0) is closed for each f ∈ I ∩ AR(G(0))

as f is continuous. Thus D is an intersection of closed sets, so it is closed. �

Before the reader carries on we recommend they review Remark 3.3 to understand the

notation used in the following proofs.

Lemma 4.6. Let G be an ample, Hausdorff groupoid, and I a basic ideal of AR(G). Then

AR(G(0) \D) = I ∩ AR(G(0))

where

D :=
⋂

f∈I∩AR(G(0))

f−1(0)

.

Proof. To show the reverse containment let f ∈ I ∩ AR(G(0)), then f(D) ≡ 0 by the

construction of D, thus f ∈ AR(G(0) \ D). Now for the forward containment let f ∈
AR(G(0) \D), then for each µ ∈ supp(f), there exists a fµ ∈ I ∩AR(G(0)) and r ∈ R \ {0}
such that fµ(µ) = r. We can write fµ =

∑
K∈F

aK1K where F is a finite family of disjoint

open subsets of G(0), hence there exists Kµ ∈ F such that aKµ = r and µ ∈ Kµ. As

multiplication in AR(G(0)) is pointwise we can see that r1Kµ = fµ ∗ 1Kµ ∈ I ∩ AR(G(0),

therefore 1Kµ ∈ I ∩ AR(G(0)) as I is a basic ideal. As the collection {1Kµ : µ ∈ supp(f)}
covers supp(f) there exists a finite sub-collection Φ (of size n) that covers supp(f). We

will now construct 1supp(f) from the elements of Φ. To do this first notice that for any
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U1, U2 ∈ Φ that 1U1∩U2 = 1U1 ∗ 1U2 ∈ I ∩ AR(G(0)). By induction this holds for any

arbitrary intersections of elements of Φ. Thus using inclusion-exclusion we get

1supp(f) =
∑
Ψ⊆Φ

(−1)(|Ψ|+1)1(
⋂

Ψ)

Thus 1supp(f) ∈ I ∩ AR(G(0)), and so f = f ∗ 1supp(f) ∈ I ∩ AR(G(0)). �

With this Lemma we can reprove one direction of the basic simplicity theorem in [8,

Theorem 4.1] using a different argument. The authors of [8] prove this theorem using

several technical lemmas. We present a much more straightforward approach that is

easier for the reader to understand. The basic outline of the proof is to show that for an

effective groupoid, every non-trivial ideal must contain a function entirely supported on

the unit-space, and for a minimal groupoid, no such ideal can contain one. Note that in

the original paper this is a if and only if statement.

Corollary 4.7. Let G be an ample, Hausdorff groupoid. Suppose G is effective and

minimal, then AR(G) is basically simple.

Proof. Let I be a non-trivial basic ideal of AR(G), then by Lemma 4.5 we have that

D :=
⋂

f∈I∩AR(G(0)

f−1(0)

is an invariant subset of G(0). As G is minimal we must have that either D = G(0) or

D = ∅.
Suppose by way of contradiction that D = G(0), then by Lemma 4.6 we get that

I ∩AR(G(0)) = {0}. However this is a contradiction as G is effective, so [8, Corollary 3.3]

implies there exists K ⊆ G(0) such that 1K ∈ I. Therefore D = ∅, so Lemma 4.6 gives us

that I ∩ AR(G(0)) = AR(G(0)), hence AR(G(0)) ⊆ I. We next claim that I = AR(G), to

see this let f ∈ AR(G) and write f =
∑
U∈F

aU1U , where F is a finite family of disjoint open

bisections. Fix a U ∈ F , then 1s(H) ∈ I which implies that 1U = 1U ∗ 1s(U) ∈ I. Therefore

f =
∑
U∈F

aU1U ∈ I. �

Remark 4.8. From this corollary we can get a result for finite group algebras over a field.

As in a group the range and source maps of a group are equal so every non-trivial group

is not effective. Therefore every non-trivial finite group algebra is non-simple.

With these lemmas in place we can now prove our main theorem in this section.

Proof of Theorem 4.1. By Lemma 4.4 is suffices to show that the map in surjective. Let

I be a basic ideal of AR(G), then we claim that

{f ∈ AR(G) : f |G
G(0)\D

≡ 0} = I
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with

D :=
⋂

f∈I∩AR(G(0))

f−1(0)

which is a closed invariant set by Lemma 4.5.

We define the restriction from AR(G)→ AR(GD) with the map

ρ(f) = f |GD .

We claim this map is a homomorphism, the fact it preserves addition and ring multipli-

cation is easy to verify. To see it preserves algebra multiplication let f, g ∈ AR(G), then

for α ∈ G

ρ(f ∗ g)(α) =
∑

r(β)=r(α)

f(β)|GDg(β−1α)|GD = ρ(f) ∗ ρ(g).

Thus this map carries the ideal I of AR(G) to the ideal ρ(I) of AR(GD). We claim that

AR(D) and the ideal ρ(I) have trivial intersection. To see this let 1K ∈ ρ(I) with K ⊆ D,

then there exists f ∈ I such that 1K = ρ(f). Define H := supp(f) \G(0), we can see H is

compact and open as G(0) is closed, thus s(H) is compact and open as s is a continuous

open map. As ρ(f) = f |GD = 1K we can see that s(H) and D are disjoint, to see this let

µ ∈ s(H)∩D. As µ ∈ s(H) there exists γ ∈ H with s(γ) = µ ∈ D, hence f(γ) 6= 0. This

however is a contraction as γ ∈ GD so f(γ) = 1K(γ) = 0.

We claim that (f − f ∗ 1s(H)) ∈ AR(G(0)) and that K ⊆ supp(f − f ∗ 1s(H)). First let

α ∈ G \ G(0), we have (f − f ∗ 1s(H))(α) = f(α) − f(α)1s(H)(s(α)). If α /∈ supp(f) then

this equals 0 and we are done, otherwise α ∈ H which implies 1s(H)(s(α)) = 1. Either

way (f − f ∗ 1s(H))(α) = 0.

Now let µ ∈ K, as D is disjoint from s(H) we also have K is disjoint from s(H).

Therefore 1s(H)(µ) = 0 and thus (f − f ∗ 1s(H))(µ) = f(µ) − f(µ)1s(H)(µ) = f(µ). The

fact ρ(f) = 1K completes the claim.

With these claims in place we can see that 1K = (f − f ∗ 1s(H)) ∗ 1K ∈ I, we now

show that K = ∅. By way of contradiction assume that K 6= ∅, then as K ⊆ D we get

that 1K /∈ AR(G(0) \ D) = I ∩ AR(G(0)) by Lemma 4.6 giving the contradiction. Thus

K = ∅ proving our claim that AR(D)∩ ρ(I) = {0}. By assumption GD is effective, so we

can apply [8, Corollary 3.3] to see that every non-trivial basic ideal of AR(GD) contains

a function supported entirely on D, hence ρ(I) must be trivial, that is ρ(I) = {0}
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Let f ∈ I, then ρ(f) = 0 which implies f ∈ AR(GG(0)\D). For the reverse inclusion note

that

AR(GG(0)\D) = span(1U : U is a compact open bisection such that s(U) ⊆ G(0) \D)

= span(1U ∗ 1s(U) : U is a compact open bisection such that s(U) ⊆ G(0) \D)

⊆ I,

as s(U) ⊆ G(0) \D implies 1s(U) ∈ I by Lemma 4.6. �
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5. Non-Basic Ideals in Steinberg algebras

We now have a complete classification of the basic ideal structure of the Steinberg

algebra of a strongly effective groupoid. In this section we attempt to extend this clas-

sification to include non-basic ideals of the algebra as well. A similar classification was

done in [7, Section 6] for Kumjian-Pask algebras where they show that an ideal of the

ring multiplied by the whole algebra can give non-basic ideals. In particular they prove

that under the equivalent higher-rank graph conditions for effective and minimal that this

map is surjective [7, Proposition 6.4]. In the more general case however, their map does

not appear to include all the non-basic ideals of the algebra. We generalize this map to

the Steinberg algebra setting as well as extending it so that it includes more non-basic

ideals of the algebra. To show our map extends and generalizes the Kumjian-Pask version

we prove that when G is effective and minimal the map is a bijection.

Theorem 5.1. Let G be an ample, Hausdorff groupoid, and R a commutative ring with

identity. Let H be the set of all open invariant subsets of G(0), and let P be the set of all

functions π : H → L(R) such that the following conditions hold:

(1) For every E1, E2 ∈ H

E1 ⊆ E2 =⇒ π(E2) ⊆ π(E1).

(2) For every E ∈ H, whenever φ ⊆ H such that
⋃
φ = E we have

π(E) =
⋂
E0∈φ

π(E0)

Then the map Γ : P → L(AR(G)) given by

Γ(π) = spanE∈H{π(E)AR(GE)}

is an injection.

Before we begin with the proofs of this section we first introduce some remarks that

allow us to more easily work with functions belonging to Γ(π). As it stands now we can

only regard functions of Γ(π) as a sum of functions each multiplied by an element of R.

This characterization is particularly difficult to work with so we introduce the following

remarks to better understand these functions. The first of these gives us a more convenient

way to write these functions.

Remark 5.2. Let f =
∑
E∈H

rE
∑
i

aU iE1U iE =
∑

E∈H,i
rEaUE1UE ∈ Γ(π), where each rE ∈ π(E)

and each s(U i
E) ⊆ E. It follows that for each E and i, [s(U i

E)] ⊆ E, therefore using
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condition (1) of the map π we can assume that EU = [s(U)] as rEaU iE ∈ π([s(UE)]). That

is we can write f ∈ Γ(π) as f =
∑
U∈F

aU1U with each aU ∈ π([s(U)]).

Next we note that as with general functions in the algebra AR(G) we can assume that

functions in the set Γ(π) are finite sums of disjoint compact open bisections. We do this

using the same technique as in [9, Remark 2.5], however we include the whole argument

for clarity as we can not assume the disjointification process gives that the ring scalars

aU are still elements of their associated π([s(U)]).

Remark 5.3. Let f =
∑
U∈F

aU1U ∈ Γ(π), with each aU ∈ π([s(U)]). We first construct the

collection F ∗ which we define to be all possible intersections of elements of F . As F ⊆ F ∗

this collection still covers supp(f). As the elements of F are compact open bisections

it follows that the elements of F ∗ are compact open bisections. We now disjointify this

collection, for U∗ ∈ F ∗ we define VU∗ := U∗ \
⋃

B∗∈F ∗:U∗ 6⊆B∗
B∗. The collection F ∗D :=

{VU∗ : U∗ ∈ F∗} can easily be verified to be a disjoint cover of supp(f) by compact open

bisections.

With this new collection we can write f =
∑

V ∈F ∗D
(

∑
U∈F :V⊆U

aU)1V . Fix V ∈ F ∗D, for

each U ∈ F : V ⊆ U we have that s(V ) ⊆ s(U) and hence [s(V )] ⊆ [s(U)], therefore

we can use condition (1) of the map π to see that aU ∈ π([s(V )]). This holds for every

U ∈ F : V ⊆ U so as π([s(V )]) is an ideal it follows that
∑

U∈F :V⊆U
aU ∈ π([s(V )]).

Putting these two remarks together gives us that we can write f ∈ Γ(π) as f =
∑
aU1U

where each U is disjoint from the others and each aU ∈ π([s(U)]).

With these two remarks in hand we can begin our proof of Theorem 5.1. However before

we begin we first need the following technical lemma. The usefulness of our two previous

remarks becomes apparent here as it makes the proof of this lemma almost trivial.

Lemma 5.4. Let π ∈ P with P defined as in Theorem 5.1. Suppose for some compact

open K ⊆ G(0) and r ∈ R that r1K ∈ Γ(π), then r ∈ π([K]).

Proof. We can write r1K =
∑
aU1U where each aU ∈ π([s(U)]), by Remark 5.3 we can

assume each U is disjoint from the rest and hence each U ⊆ K and aU = r, in particular

we get that K =
⋃
U . Thus

[K] = [
⋃

V ] = r(s−1(
⋃

V )) =
⋃

r(s−1(V ) =
⋃

[V ],

so condition (2) of the map π implies that π([K]) =
⋂
π([V ]). Putting this all together

gives r ∈ π([K]). �
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proof of Theorem 5.1. We first verify that this map gives us an ideal of AR(G). Fix π ∈ P
and let f ∈ Γ(π). Using Remark 5.3 we can write f =

∑
aU1U with each aU ∈ π([s(U)])

and each U disjoint from the rest, this sum is finite so f ∈ AR(G).

To see Γ(π) is closed under ring multiplication let r ∈ R, then

rf = r
∑

aU1U =
∑

= raU1U ∈ Γ(π)

as each π(E) is an ideal of R, so raU ∈ π([s(U)]).

To see Γ(π) is closed under algebra multiplication by elements of AR(G) let g ∈ AR(G),

then

f ∗ g =
∑
E∈H

aU1U ∗ g =
∑
E∈H

aU(1U ∗ g).

Fix such a U then by Lemma 4.4 AR(G[s(U)]) is an ideal of AR(G). Therefore 1U ∗ g ∈
AR(G[s(U)]) and so aU1U ∗ g ∈ π([s(U)])AR(G[s(U)]).

We now show this map is injective, let π1, π2 ∈ P such that Γ(π1) = Γ(π2). We show

that π1 = π2. To do this we fix an E∗ ∈ H and it suffices to show that π1(E∗) ⊆ π2(E∗)

as the reverse inclusion uses the same argument. Let r ∈ π1(E∗) and fix µ ∈ E∗. As G is

ample we can find a compact open neighborhood of µ, Kµ ⊆ E∗. We have

r1K ∈ Γ(π1) from condition (1) of the map π

= Γ(π2).

Thus by Lemma 5.4, r ∈ π([Kµ]).

This holds for every µ ∈ E∗, so as the collection of open invariant sets {[Kµ] : µ ∈ E∗}
covers E∗ we can apply condition (2) of the map π to see

r ∈
⋂
µ∈E∗

π2([Kµ]) = π2(E∗).

�

As the map Γ is an extension of the map introduced in [7, Section 6] for the Kumjian-

Pask algebra setting we can recover their result generalized up to the Steinberg algebra

setting. However to do this we need another corollary of the Cuntz-Krieger uniqueness

theorem [8, Corollary 3.3]. If we look into the details of the proof of the corollary and

its associated theorem given in [8, Theorem 3.2] we can see they actually prove this more

general version but do not include it in their statement of the theorem. To save the reader

working through the proof in [8] we include in here for completeness. We give a slightly

different argument to avoid repetition.
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Lemma 5.5. Let G be an ample Hausdorff groupoid, and R a commutative ring with

identity. Suppose G is effective and let I be an ideal of AR(G). Let f =
∑
U∈F

aU1U ∈ I,

then for every V ∈ F there exists non-empty compact open K ⊆ s(V ) such that aV 1K ∈ I.

Proof. Fix f and V as in the statement of the proof. We have that 1V −1 ∗ f = aV 1s(V ) +∑
U∈F\{V }

aU1V −1U ∈ I. We copy the technique we used in [8, Lemma 3.1] to show that

V −1U is disjoint from s(V ) for each U ∈ F \ {V }. Fix such a U and let µ ∈ s(V ), and

suppose by way of contradiction that µ ∈ V −1U . Then there exists α ∈ V and β ∈ U

such that α−1β = µ which implies that β = α, a contradiction as V ∩ U = ∅.
Let B ∈ F \ {V }, as G is effective we can apply Lemma 2.4 to get non-empty compact

open K ⊆ s(V ) such that K(V −1B)K = ∅. Thus is follows from the fact that V −1B is

disjoint from s(V ) that

1K ∗ 1V −1 ∗ f ∗ 1K = 1K ∗ aV 1s(V ) ∗ 1K +
∑

U∈F\{V }

aU1K ∗ 1V −1U ∗ 1K

= aV 1K +
∑

U∈F\{B,V }

aU1s−1(K)∩V −1U∩r−1(K) ∈ I.

Note that now s−1(K) ∩ V −1U ∩ r−1(K) ⊆ V −1U is disjoint from K ⊆ s(V ) for each

U ∈ F \ {B, V }, so we can repeat this process until F is empty to get left with aV 1K ∈ I
for some non-empty compact open K ⊆ s(V ). �

Theorem 5.6. Let G be an ample Hausdorff groupoid, and R a commutative ring with

identity. Suppose G is effective and minimal, then the map Γ given in Theorem 5.1 is a

bijection.

Proof. We first note that in this case as G is minimal the map Γ reduces to

π 7→ π(G(0))AR(G)

Using the result of Theorem 5.1 it suffices to show that this map is bijective. Let I be an

ideal of AR(G), then we claim that π(G) = {r : r1K ∈ I for all compact open K ⊆ G(0)}
satisfies I = π(G)AR(G). The fact that π(G) is an ideal of R is easy to verify, and it

trivially satisfies that necessary conditions as G(0) is the only non-trivial open invariant

subset of G(0) from the minimality of G (this is also a consequence of Lemma 5.7).

Let rf ∈ π(G)AR(G), then r1K ∈ I for all compact open K ⊆ G(0), in particular

r1s(supp(f)) ∈ I and hence rf = f ∗ r1s(supp(f)) ∈ I.

Let f =
∑
U∈F

aU1U ∈ I and fix a V ∈ F . We can apply Lemma 5.5 to get a compact

open K ⊆ s(V ) such that aV 1K ∈ I.
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Now let K ′ ⊆ G(0) and take µ ∈ K ′. As G is minimal we must have that [K] = G(0) so

there exists γµ ∈ G such that r(γµ) = µ and s(γµ) ∈ K. Let Bµ ⊆ G \G(0) be a compact

open bisection containing γµ, then

1Bµ ∗ aV 1K ∗ 1B−1
µ

= aV 1r(Bµ∩s−1(K)) ∈ I.

As γµ ∈ Bµ ∩ s−1(K) we get that µ = r(γµ) ∈ r(Bµ ∩ s−1(K)).

Because of this we can see the collection {r(Bµ ∩ s−1(K)) : µ ∈ K ′} covers K ′, thus as

K ′ is compact we can take a finite sub-collection which we will label {r(Bµt ∩ s−1(K)) :

0 ≤ t ≤M}. Note that these are compact open sets so by [9, Remark 24] we can assume

they are disjoint, and hence

aV 1K′ =
∑

0≤t≤M

aV 1r(Bµt∩s−1(K)) ∈ I.

Thus aV ∈ π(G) and therefore aV 1V ∈ π(G(0))AR(G). As V was chosen arbitrarily it

follows that f =
∑
U∈F

aU1U ∈ π(G)AR(G). �

We would like to prove the map given in Theorem 5.1 is a bijection when G is strongly

effective. Many examples suggests this conjecture is true, but unfortunately we have not

been able to give a proof confirming our suspicions. We leave this as an open question and

invite the reader to attempt to prove the result or construct a counter-example. Proving

this result would be important as it has not been shown to be true for either Kumjian-

Pask algebras, semi-group algebras, or Leavitt path algebras. To assist with any further

research into the question we present below what we believe to be the inverse of the map

Γ given in Theorem 5.1 and we show that is satisfies the required conditions.

Lemma 5.7. Let the setting of this proof be the same as in Theorem 5.1. If I is an ideal

of AR(G) then the map π : H → L(AR(G)) defined by

π(E) = {r ∈ R : r1K ∈ I for all compact open K ⊆ E}

is in P .

Proof. To show π ∈ P we must show it satisfies both the required conditions. We begin

with condition (1), let E1, E2 ∈ H such that E1 ⊆ E2. Suppose r ∈ π(E2), then r1K2 ∈ I
for all compact open K2 ⊆ E2. Let K1 ⊆ E1 be compact open, then as K1 ⊆ E1 ⊆ E2 we

have r1K1 ∈ I.

Now fix E ∈ H and let φ ⊆ H such that
⋃
φ = E, we want to show that π(E) =⋃

E∗∈φ
π(E∗). Let r ∈ π(E), then by condition (1) r ∈ π(E∗) for all E∗ ⊆ E. Hence

r ∈
⋃

E∗∈φ
π(E∗). Let r ∈

⋃
E∗∈φ

π(E∗) and fix a compact open K ⊆ E. For each µ ∈ K
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there must exists some Kµ ∈ φ that contains µ as φ covers E. Therefore as r ∈ π(Kµ)

there exists a compact open Kµ ⊆ Eµ that contains µ and with r1Kµ ∈ I. The collection

{Kµ : µ ∈ K} covers K as K is compact there exists a finite subcover, say {Kµi : 0 ≤ i ≤
N} for some N . We now construct the disjointification of this set as in [9, Remark 2.5] to

get the collection {K∗µi : 0 ≤ i ≤ N}. By the nature of this construction each K∗µi ⊆ Kµi

and so r1K∗µi = r1K∗µi ∗ 1Kµi ∈ I, hence

r1K =
∑

0≤i≤N

r1K∗µi ∈ I.

�
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